• Title/Summary/Keyword: Convex hull approximation

Search Result 2, Processing Time 0.025 seconds

An Initialization of Active Contour Models(Snakes) using Convex Hull Approximation

  • Kwak, Young-Tae
    • Journal of the Korean Data and Information Science Society
    • /
    • v.17 no.3
    • /
    • pp.753-762
    • /
    • 2006
  • The Snakes and GVF used to find object edges dynamically have assigned their initial contour arbitrarily. If the initial contours are located in the neighboring regions of object edges, Snakes and GVF can be close to the true boundary. If not, these will likely to converge to the wrong result. Therefore, this paper proposes a new initialization of Snakes and GVF using convex hull approximation, which initializes the vertex of Snakes and GVF as a convex polygonal contour near object edges. In simulation result, we show that the proposed algorithm has a faster convergence to object edges than the existing methods. Our algorithm also has the advantage of extracting whole edges in real images.

  • PDF

High quality volume visualization using B-spline interpolation (B 스플라인 보간을 이용한 고화질 볼륨 가시화)

  • Shin, Yongha;Kye, Heewon
    • Journal of the Korea Computer Graphics Society
    • /
    • v.22 no.3
    • /
    • pp.1-9
    • /
    • 2016
  • Linear interpolation is a basic sampling method for volume visualization. This method generates good images but sometimes it is inferior to our high expectation because it is encouraged to produce high quality images in the medical applications. In this paper, B spline based tri-cubic interpolation is used for the re-sampling step. The conventional B spline is an approximation method which does not cross control points so that we moved the control points and the curve crosses the original control points. In the rendering step, the empty space leaping is applicable to increase rendering speed. We have to calculate the maximum and minimum values for each block to detect empty space. The convex hull property of B spline enables the values of control points to be used as the maximum and minimum values. As a result, tri-cubic interpolated volume rendering is possible in interactive speed.