• Title/Summary/Keyword: Converted soil from Paddy

Search Result 20, Processing Time 0.032 seconds

Changes in the Soil Physical Properties of Vineyard Converted from Paddy Field (논에서 전환한 포도원의 토양물리적 특성변화)

  • Yun, Eul-Soo;Jung, Ki-Youl;Park, Ki-Do;Ko, Jee-Yeon;Lee, Jae-Saeng;Park, Sung-Tae
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.42 no.3
    • /
    • pp.145-151
    • /
    • 2009
  • This study was conducted to develop rational soil management and enhance the productivity of lands converted from paddy soils. Specifically, the changes in the soil physical properties brought about by the change in land usage from paddy soil were evaluated. This was carried out from 1999 to 2001 at 50 site in large-scale converted paddy fields of Kimcheon, Youngcheon, Gyeongsan and Milyang in the Youngnam region, categorized according to soil texture and drainage class. The ridge height of converted paddy soils was higher in coarse-textured and poorly-drained soils than in fine-textured and well-drained soils. The gray color of the surface soil was of lesser degree in converted soils than paddy soils and more notable in welldrained soils. The porosity ratio and the formation of aggregate structure were higher, and the appearance of soil mottling was deeper in converted paddy fields than in paddy soils. The glaying layer "g" of surface soil degraded with time. The porosity and amount of water stable aggregate was found to increase with time after conversion. The penetration resistance of the converted paddy soil was lower and deeper with time after conversion. The soil aeration of the converted paddy soil was lower in sandy loam than in loamy soil. Furthermore, soil aeration was influenced by ridge height and drainage class in poorly-drained soils.

Chemical and Biological Properties of Soils Converted from Paddies and Uplands to Organic Ginseng Farming System in Sangju Region

  • Lim, Jin-Soo;Park, Kee-Choon;Eo, Jinu
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.47 no.6
    • /
    • pp.500-505
    • /
    • 2014
  • In recent years, organic ginseng cultivation has increased because customers prefer organic ginseng products due to the morphological quality as well as the safety such as the residuals of chemically-synthesized pesticides. Therefore, some of paddy and upland fields were converted into organic ginseng fields. Soil chemical properties, soil microflora, and soil-inhabiting animals were investigated in paddy-converted and upland organic ginseng fields in Sangju city, Korea. There was few difference in the soil chemical properties, and the soil nutrient concentrations, such as nitrate-N, Av. $P_2O_5$ between the two field types, and exchangeable cations such as K and Ca were within the ranges which are recommended by the standard ginseng-farming manual. Changes in microflora were also assessed by analyzing phospholipid fatty acid composition. Overall, indicators of microbial groups were greater in the upland field than in the paddy-converted soil, but they were not significantly different. In addition, there was no significant change in the abundance of nematodes, collembolans, and mites between the two field types probably because of the high variation within the field types. In this study, it was suggested that soil chemical and biological properties for organic ginseng cultivation were greatly influenced by the variation of topography and soil management practices rather than field types. Further study may be needed to investigate the influence of these factors on soil chemical and biological properties in organic ginseng soils.

Effects of Paddy-Upland Rotation Systems on Nutrient Balance and Distribution in Soil Profile (답전윤환(畓田輪換) 체계(體系)에 따른 토양(土壤)의 층위별(層位別) 양분분포(養分分布) 및 양분수지(養分收支))

  • Ahn, Sang-Bae;Motomatsu, T.;Lee, Sang-Eun
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.27 no.2
    • /
    • pp.98-104
    • /
    • 1994
  • Effects of paddy-upland rotation system on nutrients distribution in soil profile and nutrient balance were studied in paddy fields from 1989 to 1993. The obtained results are summarized as follows. 1. $NO_3{^-}-N$, Av.$P_2O_5$, Ex.-K, and EC were high by small extent in surface layer of 0~20cm soil depth without the sign of salt movement to deeper layers. On the contrary Ex.-ca, Ex.-Mg, and pH became high with increase of soil depths. 2. $NO_3{^-}-N$, Av.$P_2O_5$, Ex.-K, and EC in surface soil were high in the order of Converted, Paddy-Upland Rotation, Potato-Chinese Cabbage>2 Year, Rotation, Potato-Chinese Cabbage>Converted, Paddy-Upland Rotation, Soybean>Continous Paddy, which responded well to fertilizer application rates. On the other hand Ex.-Ca, Ex.-Mg, and pH in whole layers were high in the order of Converted, Paddy-Upland Rotation, Soybean>Converted, Paddy-Upland Rptation, Potato-Chinese Cabbage>2 Year, Rotation, Potato-Chinese Cabbage>Continuous Paddy, which largely depended on plant absorption. 3. Nutrient balance in upland cropping system cultivating potato and Chinese cabbage showed that the input of chemical fertilizer of nitrogen and potassium was less than the plant uptake, while it was reverse for phosphorus with much gap between fertilizer input and plant uptake. Therefore, phosporous was expected to be accumulated by 27kg/10a every year. 4. Nutrient balance in upland cropping system cultivating soybean showed that nitrogen was not deficient to soybean crops even the chemical fertilizer input was less than plant uptake because of nitrogen fixation by rhizobia. However, there was about 1kg/10a deficit of potassium, which resulted dificiency symptom in the middle stage of soybean growth. For phosphorous there was excess of 4kg/10a, which was expected to be short for maintaining phosphorous fertility of upland soils.

  • PDF

Modeling the effects of excess water on soybean growth in converted paddy field in Japan 1. Predicting groundwater level and soil moisture condition - The case of Biwa lake reclamation area

  • Kato, Chihiro;Nakano, Satoshi;Endo, Akira;Sasaki, Choichi;Shiraiwa, Tatsuhiko
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.315-315
    • /
    • 2017
  • In Japan, more than 80 % of soybean growing area is converted fields and excess water is one of the major problems in soybean production. For example, recent study (Yoshifuji et al., 2016) suggested that in the fields of shallow groundwater level (GWL) (< 1m depth), rising GWL even in a short period (e.g. 1 day) causes inhibition of soybean growth. Thus it becomes more and more important to predict GWL and soil moisture in detail. In addition to conventional surface drainage and underdrain, FOEAS (Farm Oriented Enhancing Aquatic System), which is expected to control GWL in fields adequately, has been developed recently. In this study we attempted to predict GWL and soil moisture condition at the converted field with FOEAS in Biwa lake reclamation area, Shiga prefecture, near the center of the main island of Japan. Two dimensional HYDRUS model (Simuinek et al., 1999) based on common Richards' equation, was used for the calculation of soil water movement. The calculation domain was considered to be 10 and 5 meter in horizontal and vertical direction, respectively, with two layers, i.e. 20cm-thick of plowed layer and underlying subsoil layer. The center of main underdrain (10 cm in diameter) was assumed to be 5 meter from the both ends of the domain and 10-60cm depth from the surface in accordance with the field experiment. The hydraulic parameters of the soil was estimated with the digital soil map in "Soil information web viewer" and Agricultural soil-profile physical properties database, Japan (SolphyJ) (Kato and Nishimura, 2016). Hourly rainfall depth and daily potential evapo-transpiration rate data were given as the upper boundary condition (B.C.). For the bottom B.C., constant upward flux, which meant the inflow flux to the field from outside, was given. Seepage face condition was employed for the surrounding of the underdrain. Initial condition was employed as GWL=60cm. Then we compared the simulated and observed results of volumetric water content at depth of 15cm and GWL. While the model described the variation of GWL well, it tended to overestimate the soil moisture through the growing period. Judging from the field condition, and observed data of soil moisture and GWL, consideration of soil structure (e.g. cracks and clods) in determination of soil hydraulic parameters at the plowed layer may improve the simulation results of soil moisture.

  • PDF

Change in Available Phosphate by Application of Phosphate Fertilizer in Long-term Fertilization Experiment for Paddy Soil (인산질비료 장기연용 논토양에서 유효인산 변동)

  • Kim, Myung-Sook;Kim, Seok-Cheol;Yun, Sun-Gang;Park, Seong-Jin;Lee, Chang-Hoon
    • Korean Journal of Environmental Agriculture
    • /
    • v.36 no.3
    • /
    • pp.141-146
    • /
    • 2017
  • BACKGROUND: Phosphorus(P) is a vital factor for rice but excess input of phosphorus fertilizer can cause environmental risk and waste of fertilizer resources. We studied to assess the change of available phosphate, P balance, critical concentration of available phosphate under a rice single system. METHODS AND RESULTS: The changes of available phosphate of paddy soil were examined from long-term fertilization experiment which was started in 1954 at the National Academy of Agricultural Science. The treatments were no phosphate fertilization(No fert., and N), phosphate fertilization(NPK, NPKC, and NPKCLS). The available phosphorus concentrations in treatments without phosphate fertilizer (No fert. and N) were decreased continuously. But, after 47 years, available phosphate content in phosphate fertilizer treatment (NPK, NPKC, and NPKCLS) reached at the highest ($245{\sim}331mg\;kg^{-1}$), showing a tendency to decrease afterward. The mean annual P field balance in these treatments (NPK, NPKC, and NPKCLS) had positive values that varied from 16.6 to $17.5kg\;ha^{-1}year^{-1}$, and ratio of residual P were increased. These showed that phosphate fertilizer in soil were converted into the form of residual phosphorus which was not easily extracted by available phosphate extractant. Also, It was estimated that the critical value of available phosphate for rice cultivation was $120mg\;kg^{-1}$ using Cate-Nelson equation. CONCLUSION: We concluded that no more phosphate fertilizer should be applied in rice single system if soil available phosphate is higher than the critical P value.

Assessment on Greenhouse Gas ($CH_4$) Emissions in Korea Cropland Sector from 1990 to 2008 (1990년부터 2008년까지 우리나라 경종분야 온실가스 (메탄) 배출량 평가)

  • Jeong, Hyun-Cheol;Kim, Gun-Yeob;So, Kyu-Ho;Shim, Kyo-Moon;Lee, Seul-Bi;Lee, Deog-Bae
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.43 no.6
    • /
    • pp.911-916
    • /
    • 2010
  • Rice paddy fields and crop residue burning are a major source of methane ($CH_4$) emissions, a potent greenhouse in agriculture. This study was conducted to assess $CH_4$ emissions in Korea cropland sector from 1990 to 2008. Greenhouse gas emissions from the cropland sector are calculated in two categories: 4C (Rice cultivation) and 4F (Field burning). In 4C: Rice Cultivation, methane emissions from paddy fields (continuously flooded and intermittently flooded) cultivated for rice production had decreased from 395 $CH_4$ $10^3$ Mg in 1990 to 297 $CH_4$ $10^3$ Mg in 2008. $CH_4$ emissions converted into $CO_2$ equivalent were 8,303 $CO_2$-eq. $10^3$ Mg in 1990 and 6,229 $CO_2$-eq. $10^3$ Mg in 2008. Greenhouse gas emissions from paddy field in Korea showed that it was gradually going down as the cultivation area decreased. In 4F: Field Burning, methane emissions by burning crop residue increased from 2,502 $CH_4$ Mg in 1990 to 2,726 $CH_4$ Mg in 2008. Emissions converted $CH_4$ into $CO_2$ equivalent were 53 $CO_2$-eq. $10^3$ Mg in 1990 and 57 $CO_2$-eq. $10^3$ Mg in 2008. Total emissions of $CH_4$ from the cropland sector declined from 8,356 $CO_2$-eq. $10^3$ Mg in 1990 to 6,287 $CO_2$-eq. $10^3$ Mg in 2008.

Modeling the effects of excess water on soybean growth in converted paddy field in Japan. 2. modeling the effect of excess water on the leaf area development and biomass production of soybean

  • Nakano, Satoshi;Kato, Chihiro;Purcell, Larry C.;Shiraiwa, Tatsuhiko
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.308-308
    • /
    • 2017
  • The low and unstable yield of soybean has been a major problem in Japan. Excess soil moisture conditions are one of the major factors to restrict soybean productivity. More than 80 % of soybean crops are cultivated in converted paddy fields which often have poor drainage. In central and eastern regions of Japan, the early vegetative growth of soybean tends to be restricted by the flooding damage because the early growth period is overlapped with the rainy season. Field observation shows that induced excess water stress in early vegetative stage reduces dry matter production by decreasing intercepted radiation by leaf and radiation use efficiency (RUE) (Bajgain et al., 2015). Therefore, it is necessary to evaluate the responses of soybean growth for excess water conditions to assess these effects on soybean productions. In this study, we aim to modify the soybean crop model (Sinclair et al., 2003) by adding the components of the restriction of leaf area development and RUE for adaptable to excess water conditions. This model was consist of five components, phenological model, leaf area development model, dry matter production model, plant nitrogen model and soil water balance model. The model structures and parameters were estimated from the data obtained from the field experiment in Tsukuba. The excess water effects on the leaf area development were modeled with consideration of decrease of blanch emergence and individual leaf expansion as a function of temperature and ground water level from pot experiments. The nitrogen fixation and nitrogen absorption from soil were assumed to be inhibited by excess water stress and the RUE was assumed to be decreasing according to the decline of leaf nitrogen concentration. The results of the modified model were better agreement with the field observations of the induced excess water stress in paddy field. By coupling the crop model and the ground water level model, it may be possible to assess the impact of excess water conditions for soybean production quantitatively.

  • PDF

Response of Millet and Sorghum to Water Stress in Converted Poorly Drained Paddy Soil

  • Jung, Ki-Yuol;Yun, Eul-Soo;Park, Chang-Young;Hwang, Jae-Bok;Choi, Young-Dae;Oh, In-Seok
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.46 no.6
    • /
    • pp.409-416
    • /
    • 2013
  • Millet and sorghum are major dryland cereal crops, however their growth and productivity is limited by soil water stress with varying intensity. The major objective of this study was to evaluate water stress of millet and sorghum yield under drainage classes of poorly drained soil and to test the effect of the installed pipe drainage in poorly drained paddy soil to minimize crop stress. The research was carried out in poorly drained paddy fields located at alluvial slopping area resulting in non-uniform water content distribution by the inflow of ground water from the upper part of the field. Stress Day Index (SDI) was determined from a stress day factor (SD) and a crop susceptibility factor (CS). SD is a degree of measurement by calculating the daily sum of excess water in the profile above 30cm soil depth ($SEW_{30}$). CS depends on a given excess water on crop stage. The results showed that sum of excess water day ($SWD_{30}$) used to represent the moisture stress index was lower on somewhat poorly drained soil compared with poorly drained soil on 117 days. CS values for sorghum were 57% on $3^{rd}$ leaf stage, 44% on $5^{th}$ leaf stage, 37% on panicle initiation, 23% on boot stage, and 16% on soft dough stage. For proso millet CS values were 84% on $3^{rd}$ leaf stage, 70% on $5^{th}$ leaf Stage, 65% on panicle initiation, 53% on boot stage, and 28% on soft dough stage. And for foxtail millet the values were 73% on $3^{rd}$ leaf stage, 61% on $5^{th}$ leaf stage, 50% on panicle initiation, 29% on boot stage, and 15% on soft dough stage. SDI of sorghum and millet was more susceptible to excess soil water during panicle initation stage more poorly drained soil than somewhat poorly drained soil. Grain yield was reduced especially in proso millet and Foxtail millet compared to Sorghum.

Survey of Field Conditions of Clubroot Disease Incidence of Chinese Cabbage in Major Production Areas and Ecology of Root Gall Development (배추무사마귀병 발생실태와 뿌리혹의 생성생태)

  • 김충회
    • Plant Disease and Agriculture
    • /
    • v.5 no.2
    • /
    • pp.77-83
    • /
    • 1999
  • In 1997 surveys 82 out of 180 crucifer fields were infected with clubroot disease in a range of 1-100% of diseased plants and among crucifier crops Chinese cabbage was the most severe, In cropping systems Chinese cabbage-monocropping of Chinese cabbage-radish were found to be most common in major Chinese cabbage production areas. Welsh onion squash or paddy rice were also planted between cropping of Chinese cabbage. Paddy fields converted to upland were lowered in incidence of clubroot disease and fields with loam to silty loam soil were more severe in disease than those with sandy soil. Soil pH and organic contents were nor related to clubroot disease severity. Soil fauua such as total fungi bacteria actinomyces Pseudomonads and Bascillus were not correlated with severity of the disease. Root rall development on Chinese cabbage seedlings was initifially observed under a microscope 13 days after inoculation with Plasmodiophora brassicae but 18 days by naked eyes after inoculation. Root galls were formed mostly around collar roots and gradually spread to main root lateral roots and secondary root branches. Root galls started to enlarge greatly in size and weight from 23 days after inoculation. Chinese cabbage plants at mid-growth stage with root gall development were reduced to 1/2 of that of healthy plants in number of leaves 1/4-1/5 in above ground fresh weight 1/6 in root length but increased to 3 times in diameter of collar root. Diseased plants had little root hairs. Diseased Chinese cabbage plants at harvest were reduced by 9,1-11.8% in head weight compared to healthy plants a positive correlation was observed between root and head weight but those relationships were rot found in the diseased plants.

  • PDF

Emission Characteristics of Methane and Nitrous Oxide by Management of Water and Nutrient in a Rice Paddy Soil (논에서 물과 양분관리에 따른 메탄CH4), 아산화질소(N2O)배출 특성)

  • Kim, Gun-Yeob;Park, Sang-Il;Song, Beom-Heon;Shin, Yong-Kwang
    • Korean Journal of Environmental Agriculture
    • /
    • v.21 no.2
    • /
    • pp.136-143
    • /
    • 2002
  • Emission of methane and nitrous oxide affected by nitrogen fertilizer materials were measured simultaneously in rice paddy fields under flooding and intermittent irrigation in 2000. Studies focused on mitigating $CH_4$ emission from rice paddy fields are summarized and the possibilities and limits applied to world's rice cultivation are discussed. The mitigation options are water management, soil amendments, organic matter management, different tillage, rotation, and cultivar selection. Altering water management, in particular promoting midseason aeration by short-term drainage, is one of the most promising strategies, although these practices may be limited to the rice paddy fields where the irrigation system is well prepared. The test site was divided into two water managements: a continuously flooded plot which was maintained flooded by constant irrigation from May to September, and an intermittently drained plot in which short-term (20days) draining practices were performed one times during the flooding period. By total emission of GHGs converted by global warming potential (GWP), flooding plots were higher 170$\sim$208% than interimittent irrigation plots. For emission of GHGs in fertilizer materials, it was high in the order of Swine slurry>Urea+Rice straw>Urea>LCU. Basing on GHGs emission of urea fertilization under flooding as baseline GWP of urea fertilization and Latex-coated urea under intermittent irrigation showed lower GHGs emission by 41.4% and 55.8 respectively. In this case fertilizer use efficiency (kg unhulled rice/ of applied N) were 18.2$\sim$20.2 and 18.7$\sim$19.0 and 9.3 and 5.8$\sim$6.6 for Swine slurry and LCU and Urea+Rice straw and Urea in the continuously flooded and intermittently drained plot.