• Title/Summary/Keyword: Conversion pathway

Search Result 140, Processing Time 0.025 seconds

Putative fructose-1,6-bisphosphate aldolase 1 (AtFBA1) affects stress tolerance in yeast and Arabidopsis

  • Moon, Seok-Jun;Shin, Dong-Jin;Kim, Beom-Gi;Byun, Myung-Ok
    • Journal of Plant Biotechnology
    • /
    • v.39 no.2
    • /
    • pp.106-113
    • /
    • 2012
  • Glycolysis is responsible for the conversion of glucose into pyruvate and for supplying reducing power and several metabolites. Fructose-1,6-bisphosphate aldolase (AtFBA1), a central enzyme in the glycolysis pathway, was isolated by functional complementation of the salt-sensitive phenotype of a calcineurin (CaN)-deficient yeast mutant. Under high salinity conditions, aldolase activity and the concentration of NADH were compromised. However, expression of AtFBA1 maintained aldolase activity and the NADH level in yeast cells. AtFBA1 shares a high degree of sequence identity with known class I type aldolases, and its expression was negatively regulated by stress conditions including NaCl. The fusion protein GFP-AtFBA1 was localized in the cytosol of Arabidopsis protoplasts. The seed germination and root elongation of AtFBA1 knock-out plants exhibited sensitivity to ABA and salt stress. These results indicate that AtFBA1 expression and aldolase activity is important for stress tolerance in yeast and plants.

Biosynthesis of Rhamnosylated Anthraquinones in Escherichia coli

  • Nguyen, Trang Thi Huyen;Shin, Hee Jeong;Pandey, Ramesh Prasad;Jung, Hye Jin;Liou, Kwangkyoung;Sohng, Jae Kyung
    • Journal of Microbiology and Biotechnology
    • /
    • v.30 no.3
    • /
    • pp.398-403
    • /
    • 2020
  • Rhamnose is a naturally occurring deoxysugar present as a glycogenic component of plant and microbial natural products. A recombinant mutant Escherichia coli strain was developed by overexpressing genes involved in the TDP-ʟ-rhamnose biosynthesis pathway of different bacterial strains and Saccharothrix espanaensis rhamnosyl transferase to conjugate intrinsic cytosolic TDP-ʟ-rhamnose with anthraquinones supplemented exogenously. Among the five anthraquinones (alizarin, emodin, chrysazin, anthrarufin, and quinizarin) tested, quinizarin was biotransformed into a rhamoside derivative with the highest conversion ratio by whole cells of engineered E. coli. The quinizarin glycoside was identified by various chromatographic and spectroscopic analyses. The anti-proliferative property of the newly synthesized rhamnoside, quinizarin-4-O-α-ʟ-rhamnoside, was assayed in various cancer cells.

Enhancement of Ornithine Production in Proline-Supplemented Corynebacterium glutamicum by Ornithine Cyclodeaminase

  • Lee, Soo-Youn;Cho, Jae-Yong;Lee, Hyun-Jeong;Kim, Yang-Hoon;Min, Ji-Ho
    • Journal of Microbiology and Biotechnology
    • /
    • v.20 no.1
    • /
    • pp.127-131
    • /
    • 2010
  • In this study, Corynebacterium glutamicum and its derived mutants were used to demonstrate the relationship between proline, glutamate, and ornithine. The maximum ornithine production was shown in the culture medium (3,295.0 mg/l) when the cells were cultured with 20 mM proline, and was 15.5 times higher than in the presence of 1 mM proline. However, glutamate, which is known as an intermediate in the process of converting proline to ornithine, did not have any positive effect on ornithine production. This suggests that the conversion of proline to ornithine through glutamate, is not possible in C. glutamicum. Comparative analysis between the wild-type strain, SJC 8043 ($argF^-$, $argR^-$), and SJC 8064 ($argF^-$, $argR^-$, and $ocd^-$), showed that C glutamicum could regulate ornithine production by ornithine cyclodeaminase (Ocd) under proline-supplemented conditions. Therefore, proline directly caused an increase in the endogenous level of ornithine by Ocd, which would be a primary metabolite in the ornithine biosynthesis pathway.

Theoretical Analysis and Study of Design of Autothermal Reformer for Use in Fuel Cell (연료전지용 열분해 개질기의 이론해석 및 설계연구)

  • Kang, Il-Hwan;Kim, Hyung-Man;Choi, Kap-Seung;Wang, Hak-Min
    • 한국연소학회:학술대회논문집
    • /
    • 2005.10a
    • /
    • pp.58-63
    • /
    • 2005
  • As fuel cells approach commercialization, hydrogen production becomes a critical step in the overall energy conversion pathway. Reforming is a process that produces a hydrogen-rich gas from hydrocarbon fuels. Hydrogen production via autothermal reforming (ATR) is particularly attractive for applications that demand a quick start-up and response time in a compact size. However, further research is required to optimize the performance of autothermal reformers and accurate models of reactor performance must be developed and validated. The design includes the requirement of accommodating a wide range of experimental set ups. Factors considered in the design of the reformer are capability to use multiple fuels, ability to vary stoichiometry, precise temperature and pressure control, implementation of enhancement methods, capability to implement variable catalyst positions and catalyst arrangement, ability to monitor and change reactant mixing, and proper implementation of data acquisition. A model of the system was first developed in order to calculate flowrates, heating, space velocity, and other important parameters needed to select the hardware that comprises the reformer. Predicted performance will be compared to actual data once the reformer construction is completed. This comparison will quantify the accuracy of the model and should point to areas where further model development is required. The end result will be a research tool that allows engineers to optimize hydrogen production via autothermal reformation.

  • PDF

Molecular cloning and restriction endonuclease mapping of homoserine dehydrogenase gene (HOM6) in yeast saccharomyces cerevisiae (Aspartate계 아미노산 대사 효모 유전자 HOM6의 cloning 및 구조분석)

  • 김응기;이호주
    • Korean Journal of Microbiology
    • /
    • v.24 no.4
    • /
    • pp.357-363
    • /
    • 1986
  • Synthesis of threonine and methionine in yeast, Saccharomyces cerevisiae shares a common pathway from aspartate via homoserine. HOM6 gene encodes homoserine dehydrogenase (HSDH) which catalyzes the inter-conversion of beta-aspartate semialdehyde and homoserine. The level of HSDH is under methionine specific control. A recombinant plasmid (pEK1: 13.3kb), containing HOM6 gene, has been isolated and cloned into E. coli by complenemtary transformation of a homoserine auxotrophic yeast strain M-20-20D (hom6, trp1, ura3) to a prototrophic M20-20D/pEK1, using a library of yeast genomic DNA fragments in a yeast centromeric plasmid, YCp50(8.0kb). Isolation of HOM6has been primarily confirmed by retransformation of the original yeast strain M20-20D, using the recombinant plasmid DNA which was extracted from M20-20D/pEK1 and subsequently amplified in E. coli. Eleven cleavage sites in the insery (5.3kb) have been localized through fragment analysis for 8 restriction endonucleases; Bgl II(2 site), Bgl II(1), Cla I(3), Eco RI(1), Hind III(2), Kpn I (1), Pvu II(1) and Xho I(1).

  • PDF

Expression of Δ-desaturase Gene in a Recombinant Pichia pastoris GS115 Strain and Its Activity (재조합 Pichia pastoris GS115에서 Δ-desaturase의 발현과 그 활성)

  • Bae, Kyung-Dong
    • KSBB Journal
    • /
    • v.26 no.6
    • /
    • pp.557-560
    • /
    • 2011
  • It has been known that Δ-desaturase (TAD5) in the biosynthetic pathway of long chain polyunsaturated fatty acids of Thraustochytrium aureumis responsible for the conversion of di-homo-${\gamma}$-linolenic acid (C20:4) into arachidonic acid (C20:4). The genetic sequence analysis on TAD5 of Thraustochytrium aureum ATCC34304 used in this study showed that it has two amino acid changes when compared to that of Thraustochytrium aureum TAD5 first reported in 2003. Accordingly, Thraustochytrium aureum ATCC34304 TAD5 was named TAD5_1. TAD5_1-inserted methylotropic Pichia pastoris was prepared and then cultured with a precursor fatty acid, di-homo-${\gamma}$-linolenic acid. GC analysis confirmed that a certain amount of the precursor fatty acid was converted into arachidonic acid. In this study, not only a recombinant Pichia pastoris with the typical activity of ${\Delta}5$-desaturase which plays an essential role in the biosynthesis of LCPUFAs was successfully made but also the preparationpotential of a recombinant Pichia pastoris strain which may synthesize eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) that are important in maintaining and improving human's brain function was proposed.

Market Prediction Methodology for a Medical 3D Printing Business : Focusing on Dentistry (의료분야 3D프린팅 비즈니스 시장규모 예측 연구 : 치과 분야를 중심으로)

  • Kim, Min Kwan;Lee, Jungwoo;Kim, Young Myung;Lee, Kikwang;Han, Chang Hee
    • Journal of Information Technology Applications and Management
    • /
    • v.23 no.2
    • /
    • pp.263-277
    • /
    • 2016
  • Recently, 3D printing technology has been considered as a core applicable technology because it brings many improvements such as the development of medical technology, medical customization, and reducing production cost and shortening treatment period. This research suggests a market prediction framework for medical 3D printing business. As an immature market situation, it is important to control some uncertainty for market prediction such as a customers' conversion rate. So we adopt decision making tree (DMT) model which used to choose an optimal decision making among diverse pathway. Among medical industries this paper just focuses on dentistry business. For predicting a 5 year period trend expected market size, we identified some replaceable denture procedure by 3D printing, collected related data, controlled uncertain variables. The result shows that medical 3D printing business could be a market of 28.2 billion won at 1st year and in the end of fifth year it could become on a scale of 61.1 billion won market.

Anti-Thrombotic Effects of Egg Yolk Lipids In Vivo

  • Cho, Hyun-Jeong;Ju, Young-Cheol;Park, Hwa-Jin
    • Biomedical Science Letters
    • /
    • v.16 no.4
    • /
    • pp.377-380
    • /
    • 2010
  • In this study, we investigated the effect of egg yolk lipids (EYL) on collagen ($10\;{\mu}g/ml$)-stimulated platelet aggregation in vivo. Dietary EYL significantly inhibited collagen-induced platelet aggregation, in addition, increased the formation of cyclic adenosine monophosphate (cAMP) and cyclic guanosine monophosphate (cGMP), intracellular $Ca^{2+}$-antagonist as aggregation-inhibiting molecules, in collagen-stimulated platelets. These results suggest that EYL inhibits the collagen-induced platelet aggregation by up-regulating the cAMP and cGMP production. On the other hands, prothrombin time (PT) on extrinsic pathway of blood coagulation was potently prolonged by dietary EYL in vivo. These findings suggest that EYL prolongs the internal time between the conversion of fibrinogen to fibrin. Accordingly, our data demonstrate that EYL may be a crucial tool for a negative regulator during platelet activation and blood coagulation on thrombotic diseases.

Syngas and Hydrogen Production from $CeO_2/ZrO_2$ coated Foam Devices under Simulated Solar Radiation (다공성 폼에 코팅된 $CeO_2/ZrO_2$ 를 이용한 고온 태양열 합성가스 및 수소 생산 연구)

  • Jang, Jong-Tak;Yoon, Ki-June;Han, Gui-Young
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2012.03a
    • /
    • pp.260-266
    • /
    • 2012
  • Syngas and hydrogen from the $CeO_2/ZrO_2$ coated foam devices were investigated under simulated solar radiation. The $CeO_2/ZrO_2$ coated SiC, Ni and Cu foam device were prepared using drop-coating method. Syngas production step was performed at $900^{\circ}C$, and hydrogen production process was performed for ten repeated cycles to compare the CeO2 conversion in syngas production step, $H_2$ yield in hydrogen production step and cycle reproducibility. The produced syngas had the $H_2$/CO ratio of 2, which was suitable for methanol synthesis or Fischer-Tropsch synthesis process. In addition, syngas and hydrogen production process is one of the promising chemical pathway for storage and transportation of solar heat by converting solar energy to chemical energy. After ten cycles of redox reaction, the $CeO_2/ZrO_2$ was analyzed using XRD pattern and SEM image in order to characterize the physical and chemical change of metal oxide at the high temperature.

  • PDF

Preparation of Boron Compounds from Calcium Borate, Colemanite : Synthesis of Hexagonal Boron Nitride from Boric Oxide(III) (Colemanite 붕산염으로부터 붕소화합물의 제조 : 무수붕산으로부터 육방정 질화붕소의 합성 (III))

  • Jee, Mi-Jung;Jang, Jae-Hun;Paik, Jong-Hoo;Lee, Mi-Jai;Lim, Hyung-Mi;Choi, Byung-Hyun
    • Journal of the Korean Ceramic Society
    • /
    • v.41 no.11
    • /
    • pp.812-818
    • /
    • 2004
  • This study has been undertaken with objective of studying the mechanism and condition of formation of hexagonal boron nitride from reduction of boric okide in the presence of carbon under nitrogen atmosphere. It was found that the formation of hexagonal boron nitride was started at 1400$^{\circ}C$ and almost completed its conversion at 1550$^{\circ}C$. The morphology of boron nitride synthesized in this study was very fine and platelet. It was considered as reaction pathway of hexagonal boron nitride that boron oxide was reduced to born and evaporated by activated carbon, and then it was reacted with nitrogen.