• Title/Summary/Keyword: Conversion formula

Search Result 80, Processing Time 0.028 seconds

Spatial Interpolation of Hourly Air Temperature over Sloping Surfaces Based on a Solar Irradiance Correction (일사 수광량 보정에 의한 산악지대 매시기온의 공간내삽)

  • 정유란;윤진일
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.4 no.2
    • /
    • pp.95-102
    • /
    • 2002
  • Spatial interpolation has become a common procedure in converting temperature forecasts and observations at irregular points for use in regional scale ecosystem modeling and the model based decision support systems for resource management. Neglection of terrain effects in most spatial interpolations for short term temperatures may cause erroneous results in mountainous regions, where the observation network hardly covers full features of the complicated terrain. A spatial interpolation model for daytime hourly temperature was formulated based on error analysis of unsampled site with respect to the site topography. The model has a solar irradiance correction scheme in addition to the common backbone of the lapse rate - corrected inverse distance weighting. The solar irradiance scheme calculates the direct, diffuse and reflected components of shortwave radiation over any surfaces based on the sun-slope geometry and compares the sum with that over a reference surface. The deviation from the reference radiation is used to calculate the temperature correction term by an empirical conversion formula between the solar energy and the air temperature on any sloped surfaces at an hourly time scale, which can be prepared seasonally for each land cover type. When this model was applied to a 14 km by 22 km mountainous region at a 10 m horizontal resolution, the estimated hourly temperature surfaces showed a better agreement with the observed distribution than those by a conventional method.

An Analysis of Optimal Operation Strategy of ESS to Minimize Electricity Charge Using Octave (Octave를 이용한 전기 요금 최소화를 위한 ESS 운전 전략 최적화 방법에 대한 분석)

  • Gong, Eun Kyoung;Sohn, Jin-Man
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.4
    • /
    • pp.85-92
    • /
    • 2018
  • Reductions of the electricity charge are achieved by demand management of the load. The demand management method of the load using ESS involves peak shifting, which shifts from a high demand time to low demand time. By shifting the load, the peak load can be lowered and the energy charge can be saved. Electricity charges consist of the energy charge and the basic charge per contracted capacity. The energy charge and peak load are minimized by Linear Programming (LP) and Quadratic Programming (QP), respectively. On the other hand, each optimization method has its advantages and disadvantages. First, the LP cannot separate the efficiency of the ESS. To solve these problems, the charge and discharge efficiency of the ESS was separated by Mixed Integer Linear Programming (MILP). Nevertheless, both methods have the disadvantages that they must assume the reduction ratio of peak load. Therefore, QP was used to solve this problem. The next step was to optimize the formula combination of QP and LP to minimize the electricity charge. On the other hand, these two methods have disadvantages in that the charge and discharge efficiency of the ESS cannot be separated. This paper proposes an optimization method according to the situation by analyzing quantitatively the advantages and disadvantages of each optimization method.

Effects of Dried Leftover Food and Green Tea By-Product on Performance and Egg Quality in Laying Hens (남은 음식물과 녹차 부산물이 산란계의 산란성적과 계란품질에 미치는 영향)

  • Damdinsuren, Unganbayar;Ku, Min jung;Bae, In Hyu;Yang, Chul Ju;Sun, Sang Soo
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.14 no.4
    • /
    • pp.121-131
    • /
    • 2006
  • This study was designed to determinate the effects of dried leftover food and green tea by-product on laying hens performance and egg quality in hens. A total of 210 "Tetran Brown" layers 50-weeks of age were assigned to 7 treatments in a completely randomized design. Each treatment had five replicates per treatment with six layers per replication. Seven dietary treatments were a control diet (formula diet) and dried leftover food (DLF) mixed in 10, 20, 30 and 40% to the control diet substituting the corn grain and soybean meal, control diet containing 1.0% GTB without DLF supplementation and control diet containing 30% DLF plus 1.0% GTB supplementation. The trial period was for 8 weeks. The egg production rate of layers was significantly increased in 10, 20 and 40% DLF treatments compared to that of the control treatment (P<0.05). The egg weight was significantly decreased in 10% DLF treatment compared to that of the control (P<0.05). The feed intake of layers was higher in 20% DLF and 30% DLF plus 1.0% GTB treatment than that of the control (P<0.05). The feed conversion ratio significantly decreased in 10% DLF and control plus 1.0% GTB treatments compared to that of the control (P<0.05). The egg yolk cholesterol not varied among the DLF and control treatments (P>0.05). However, the linolenic acid content of egg yolk was significantly increased in DLF and control treatments both containing 1.0% GTB supplementation.

  • PDF

Software development for the visualization of brain fiber tract by using 24-bit color coding in diffusion tensor image

  • Oh, Jung-Su;Song, In-Chan;Ik hwan Cho;Kim, Jong-Hyo;Chang, Kee-Hyun;Park, Kwang-Suk
    • Proceedings of the KSMRM Conference
    • /
    • 2002.11a
    • /
    • pp.133-133
    • /
    • 2002
  • Purpose: The purpose of paper is to implement software to visualize brain fiber tract using a 24-bit color coding scheme and to test its feasibility. Materials and Methods: MR imaging was performed on GE 1.5 T Signa scanner. For diffusion tensor image, we used a single shot spin-echo EPI sequence with 7 non-colinear pulsed-field gradient directions: (x, y, z):(1,1,0),(-1,1,0),(1,0,1),(-1,0,1),(0,1,1),(0,1,-1) and without diffusion gradient. B-factor was 500 sec/$\textrm{mm}^2$. Acquisition parameters are as follows: TUTE=10000ms/99ms, FOV=240mm, matrix=128${\times}$128, slice thickness/gap=6mm/0mm, total slice number=30. Subjects consisted of 10 normal young volunteers (age:21∼26 yrs, 5 men, 5 women). All DTI images were smoothed with Gaussian kernel with the FWHM of 2 pixels. Color coding schemes for visualization of directional information was as follows. HSV(Hue, Saturation, Value) color system is appropriate for assigning RGB(Red, Green, and Blue) value for every different directions because of its volumetric directional expression. Each of HSV are assigned due to (r,$\theta$,${\Phi}$) in spherical coordinate. HSV calculated by this way can be transformed into RGB color system by general HSV to RGB conversion formula. Symmetry schemes: It is natural to code the antipodal direction to be same color(antipodal symmetry). So even with no symmetry scheme, the antipodal symmetry must be included. With no symmetry scheme, we can assign every different colors for every different orientation.(H =${\Phi}$, S=2$\theta$/$\pi$, V=λw, where λw is anisotropy). But that may assign very discontinuous color even between adjacent yokels. On the other hand, Full symmetry or absolute value scheme includes symmetry for 180$^{\circ}$ rotation about xy-plane of color coordinate (rotational symmetry) and for both hemisphere (mirror symmetry). In absolute value scheme, each of RGB value can be expressed as follows. R=λw|Vx|, G=λw|Vy|, B=λw|Vz|, where (Vx, Vy, Vz) is eigenvector corresponding to the largest eigenvalue of diffusion tensor. With applying full symmetry or absolute value scheme, we can get more continuous color coding at the expense of coding same color for symmetric direction. For better visualization of fiber tract directions, Gamma and brightness correction had done. All of these implementations were done on the IDL 5.4 platform.

  • PDF

Effect of Lugol's Iodine Preservation on Cyanobacterial Biovolume and Estimate of Live Cell Biovolume Using Shrinkage Ratio (Lugol's Iodine Solution 첨가 후 보존 기간별 남조류 세포부피 변화 및 수축비를 이용한 생세포 부피 산정)

  • Park, Hae-Kyung;Lee, Hyeon-Je;Lee, Hae-Jin;Shin, Ra-Young
    • Journal of Korean Society on Water Environment
    • /
    • v.34 no.4
    • /
    • pp.375-381
    • /
    • 2018
  • The monitoring of phytoplankton biomass and community structure is essential as a first step to control the harmful cyanobacterial blooms in freshwater systems, such as seen in rivers and lakes, due to the process of eutrophication and climate change. In order to quantify the biomass of phytoplankton with a wide range in size and shape, the measurement of cell biovolume along with cell density is required for a comprehensive review on this issue. However, most routine monitoring programs preserve the gathered phytoplankton samples before analysis using chemical additives, because of the constraint of time and the number of samples. The purpose of this study was to investigate the cell biovolume change characteristics of six cyanobacterial species, which are common bloom-causing cyanobacteria in the Nakdong River, after the preservation with Lugol's iodine solution. All species showed a statistically significant difference after the addition of Lugol's iodine solution compared to the live cell biovolume, and the cell biovolume decreased to the level of 34.0 ~ 56.3 % at maximum in each species after the preservation. The nonlinear regression models for determining the shrinkage ratio by a preservation period were derived by using the cell biovolume measured until 180 days preservation of each target species, and the equation to convert the cell biovolume measured after preservation for a certain period to the cell biovolume of viable cell was derived using that formula. The conversion equation derived from this study can be used to estimate the actual cell biovolume in the natural environment at the time of sampling, by using the measured biovolume after the preservation in the phytoplankton monitoring. Moreover this is expected to contribute to the final interpretation of the water quality and aquatic ecosystem impacts due to the cyanobacterial blooms.

Convergence research on education needs for prevention and control of infectious diseases (감염병 예방 및 관리에 대한 교육요구도 융복합 연구)

  • Kang, Kyung-hee;Park, Arma;Lim, HyoNam;Hwang, Hye-Jeong;Kim, Kwang Hwan
    • Journal of the Korea Convergence Society
    • /
    • v.12 no.4
    • /
    • pp.95-103
    • /
    • 2021
  • This study was aimed to investigate the education needs for prevention and control of infectious diseases by lifecycle based on age group and to provide the fundamental data to develop the educational programs. A research was conducted with 328 adults over 19 years old for a month of February 2021 through online and mobile survey by Gallup Korea. Research contents include the general characteristics, personal hygiene practices related to infection, perceived risks related to infection, importance and level of knowledge on infectious diseases, and education needs for prevention and control of infectious diseases. For the research data analysis, PASW Statistics Ver 20.0 was used as a statistical program. Ranks from analysis upon conversion as the formula of Borich needs to sum up with importance and knowledge level showed first (Borich 3.11) with treatments for infectious diseases; second (Borich 2.15) with process in case of suspicion and diagnosis of infectious diseases; third (Borich 1.75) with transmission routes of infectious diseases; fourth (Borich 1.73) with preventive ways of infectious diseases; fifth (Borich 1.50) with diagnostic and test methods of infectious diseases; sixth (Borich 1.45) with characteristics of infectious diseases; and seventh (Borich1.38) with main symptoms of infectious diseases. It is anticipated that development of educational programs applying education needs for prevention and control of infectious diseases in this research can contribute to enhance the physical health, mental health, and psychological well-being of the subjects.

Modification of Herbal Product(Herb Mix®) to Improve the Efficacy on the Growth and Laying Performance of Chickens (닭의 성장과 산란 생산성 개선 효과 증대를 위한 한방제제(Herb Mix®)의 개량에 관한 연구)

  • Lee, W.S.;Paik, I.K.
    • Korean Journal of Poultry Science
    • /
    • v.34 no.4
    • /
    • pp.245-251
    • /
    • 2007
  • This study was conducted to investigate the effects of modification of a herbal recipe(Herb $Mix^{(R)}$) on the growth of pullet and laying performance of hens. The formula of Herb $Mix^{(R)}$, a mixture of Rehmannia glutinosa, Angelica gigas, Discorea japonica, Glycyrrhiza uralensis, Schisandra chinensis and Ligusticum jeholense, was modified in mixing ratio. A total of 1,120 pullets(Hy-Line Brown) of 14 wks old were assigned to seven treatments; control, Herb $Mix^{(R)}$(HM), R. glutinosa fortified HM, A. gigas fortified HM, D. japonica fortified HM, G. uralensis fortified HM, S. chinensis fortified HM, L. jeholense fortified HM and Flavomycin supplemented diet. Each treatment had 8 replicates of 20 birds each housed in 2 birds cages. Body weight at 10% egg production was significantly(P<0.05) influenced by treatments. Birds fed A. gigas fortified HM diet were heaviest followed by L. jeholense fortified HM, HM-original and D. japonica fortified HM, Flavomycin supplemented diet and R. glutinosa while those fed control diet were lightest. Also, age reaching 50% egg production and peak production was earliest in A. gigas fortified HM and latest in the control. Egg production, feed intake, feed conversion and egg weight were significantly influenced by treatments. Significant improvement in egg production and feed intake was shown in A. gigas fortified HM treatment. Feed conversion ratio was lowest in antibiotic(Flavomycin) treatment and egg weight was heaviest in L. jeholense fortified HM treatment. There were no significant differences among treatments in intestinal microflora but cfu of Cl. perfringnes and E. coli tended to be lower in HM treatments than the control. Among the leucocytes of blood, the HM treatments were lower than the control in counts of white blood cell and heterophils. It was concluded that modification of Herb $Mix^{(R)}$ fortifying with A. gigas, D. japonica and L. jeholense significantly influence growth and laying performance of birds.

Characteristics of the Differences between Significant Wave Height at Ieodo Ocean Research Station and Satellite Altimeter-measured Data over a Decade (2004~2016) (이어도 해양과학기지 관측 파고와 인공위성 관측 유의파고 차이의 특성 연구 (2004~2016))

  • WOO, HYE-JIN;PARK, KYUNG-AE;BYUN, DO-SEONG;LEE, JOOYOUNG;LEE, EUNIL
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.23 no.1
    • /
    • pp.1-19
    • /
    • 2018
  • In order to compare significant wave height (SWH) data from multi-satellites (GFO, Jason-1, Envisat, Jason-2, Cryosat-2, SARAL) and SWH measurements from Ieodo Ocean Research Station (IORS), we constructed a 12 year matchup database between satellite and IORS measurements from December 2004 to May 2016. The satellite SWH showed a root mean square error (RMSE) of about 0.34 m and a positive bias of 0.17 m with respect to the IORS wave height. The satellite data and IORS wave height data did not show any specific seasonal variations or interannual variability, which confirmed the consistency of satellite data. The effect of the wind field on the difference of the SWH data between satellite and IORS was investigated. As a result, a similar result was observed in which a positive biases of about 0.17 m occurred on all satellites. In order to understand the effects of topography and the influence of the construction structures of IORS on the SWH differences, we investigated the directional dependency of differences of wave height, however, no statistically significant characteristics of the differences were revealed. As a result of analyzing the characteristics of the error as a function of the distance between the satellite and the IORS, the biases are almost constant about 0.14 m regardless of the distance. By contrast, the amplitude of the SWH differences, the maximum value minus the minimum value at a given distance range, was found to increase linearly as the distance was increased. On the other hand, as a result of the accuracy evaluation of the satellite SWH from the Donghae marine meteorological buoy of Korea Meteorological Administration, the satellite SWH presented a relatively small RMSE of about 0.27 m and no specific characteristics of bias such as the validation results at IORS. In this paper, we propose a conversion formula to correct the significant wave data of IORS with the satellite SWH data. In addition, this study emphasizes that the reliability of data should be prioritized to be extensively utilized and presents specific methods and strategies in order to upgrade the IORS as an international world-wide marine observation site.

A historical study of the Large Banner, a symbol of the military dignity of the Late Joseon Dynasty (조선 후기 무위(武威)의 상징 대기치(大旗幟) 고증)

  • JAE, Songhee;KIM, Youngsun
    • Korean Journal of Heritage: History & Science
    • /
    • v.54 no.4
    • /
    • pp.152-173
    • /
    • 2021
  • The Large Banner was introduced during the Japanese Invasions of Korea with a new military system. It was a flag that controlled the movement of soldiers in military training. In addition, it was used in other ways, such as a symbol when receiving a king in a military camp, a flag raised on the front of a royal procession, at the reception and dispatch of envoys, and at a local official's procession. The Large Banner was recognized as a symbol of military dignity and training rites. The Large Banner was analyzed in the present study in the context of two different types of decorations. Type I includes chungdogi, gakgi and moongi. Type II includes grand, medium, and small obangi, geumgogi and pyomigi. Each type is decorated differently for each purpose. The size of the flag is estimated to be a square of over 4 ja long in length. Flame edges were attached to one side and run up and down The Large Banner used the Five Direction Colors based on the traditional principles of Yin-Yang and Five Elements. The pattern of the Large Banner is largely distinguished by four. The pattern of large obangi consists of divine beasts symbolizing the Five Directions and a Taoism amulet letter. The pattern of medium obangi features spiritual generals that escort the Five Directions. The pattern of small obangi has the Eight Trigrams. The pattern of moongi consists of a tiger with wings that keeps a tight watch on the army's doors. As for historical sources of coloring for Large Banner production, the color-written copy named Gije, from the collection of the Osaka Prefect Library, was confirmed as the style of the Yongho Camp in the mid to late 18th century, and it was also used for this essay and visualization work. We used Cloud-patterned Satin Damask as the background material for Large Banner production, to reveal the dignity of the military. The size of the 4 ja flag was determined to be 170 cm long and 145 cm wide, and the 5 ja flag was 200 cm long and 175 cm wide. The conversion formula used for this work was Youngjochuck (1 ja =30cm). In addition, the order of hierarchy in the Flag of the King was discovered within all flags of the late Joseon Dynasty. In the above historical study, the two types of Large Banner were visualized. The visualization considered the size of the flag, the decoration of the flagpole, and the patterns described in this essay to restore them to their original shape laid out the 18th century relics on the background. By presenting color, size, material patterns, and auxiliary items together, it was possible not only to produce 3D content, but also to produce real products.

THE FOOD AND GROWTH OF THE LARVAE OF THE ARK SHELL ANADARA BROUGHTONI SCHRENCK (피조개의 먹이와 성장)

  • Yoo Sung Kyoo
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.2 no.2
    • /
    • pp.147-154
    • /
    • 1969
  • The larvae of the ark shell Anadare broughtoni(Schrenck) were grown at room temporature (approximately $20.4^{\circ}C$), and fed laboratory-cultured Cyclotella nana. The egg of the ark shell produced in the laboratory measured about $54.9\mu$ in diameter. The embryos gradually developed into larvae up to $110.8\mu$ shell length, $83.9\mu$ shell height and with shell breadth of $58.2\mu$ even in the absence of the algal food. Beyond this sire, however, the growth of the larvae was considerably retarded. The larvae showed better growth rate when they were fed the algal food two days after spawning, i. e., early straight-hinge stage. Daily rate of food consumption varies according to the larval sizes. But the rate increases considerably when the larvae begin to form umbos. In general the rate Is indicated by the following formula: $Y=0.0025161\;X^{2.76459}$. The growth experiments of the larvae indicate that the efficiency of food conversion was higher when fed centrifuged food. Regarding to the difference in the slopes of growth curve, centrifuged food showed better growth rate as compared to those grown with the non-centrifuged food. The smaller the larval size, the greater will be the difference in growth. The larvae began settling when they reathed 261.7 to $289.6\;{\mu}$ in shell length, 199.2 to $221.7\mu$ in shell height and 147.6 to $170.8\mu$ in shell breadth. The time which elapsed from spawning to the larval settlement was about 28 days. The mean growth of the larvae is indicated with regression line and exponential curve equations as follows. Regression line shell length. 94.3 to $133.9\mu$ : Y==85.22857+3.35000X 141.6 to $269.3\mu$: Y=10.83036X-36.05357 296.8 to $373.2\mu$ : Y=19.10000X-279.30000 shell height: 72.7 to $89.7\mu$ : Y=67.11429+2.15714X 108.4 to $206.4\mu$ : Y=8.31607X-27.45357 228.6 to $282.1\mu$: Y=173.46700+13.37500X shell breadth: 45.3 to $77.8\mu$ : Y=38.08510X+2.73570X 87.4 to $157.7\mu$: Y=5.77320X-5.99640 175.4 to $214.0\mu$: Y=19.65000X-114.13300 Exponential curve shell length. 94.3 to $373.2\mu$: Y=72.45 $e^{0.04697x}$ shell height: 72.7 to $282.1\mu$: Y=54,96 $e^{0.04720x}$ shell breadth: 45.3 to $214.0\mu$ : Y=39.82 $e^{0.04927x}$ The relationships between the shell length and shell height and between the shell length and shell breadth are indicated as follows- shell height: 72.7 to $98.7\mu$ : Y=12.87780+0.63817X 108.4 to $206.4\mu$ : Y=0.90220+0.76456X 228.6 to $282.1\mu$ : Y=25.02630+0.69156X shell breadth: 45.3 to $77.8\mu$:Y=0.81373Xx-31.18914 87.4 to $157.7\mu$ : Y=13.37549+0.53230X 175.4 to $214.0\mu$: Y=30.24328+0.49545X

  • PDF