• Title/Summary/Keyword: Conversion Cost

Search Result 798, Processing Time 0.027 seconds

An Efficient Converter Placement in Wavelength-Routed WDM Networks with Sparse-Partial-Limited Wavelength Conversion (파장분할다중화 광통신망에서 산재-부분-제한영역 파장 변환기의 효율적인 배치 알고리듬)

  • Jeong, Han-You;Seo, Seung-Woo;Choi, Yoon-Ho
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.11B
    • /
    • pp.1596-1606
    • /
    • 2010
  • In this paper, we present a new analytical model that can precisely estimate the blocking performance of wavelength-routed WDM networks with sparse-partial-limited wavelength conversion (SPLWC). The proposed model accounts for the two sources of call blocking in a wavelength converter: range blocking originated from the limited conversion range of a wavelength converter; and capacity blocking induced from the limited number of wavelength converters. Based on the proposed model, we also present a new converter placement algorithm that minimizes the amount of wavelength conversion capability, while satisfying the given constraint on the network-wide blocking probability. From the numerical results obtained from the EON, we demonstrate that the blocking probability of the analytical model closely matches with that of the simulation. We also show that, by efficiently combining the existing sparse, partial, and limited wavelength conversion, the SPL WC can achieve the required blocking performance with the least amount of wavelength conversion cost.

Fabrication of NiS Thin Films as Counter Electrodes for Dye-Sensitized Solar Cells using Atomic Layer Deposition

  • Jeong, Jin-Won;Kim, Eun-Taek;Park, Su-Yong;Seong, Myeong-Mo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.276.2-276.2
    • /
    • 2016
  • Dye-sensitized solar cells (DSCs) are promising candidates for light-to-energy conversion devices due to their low-cost, easy fabrication and relative high conversion efficiency. An important component of DSCs is counter electrode (CE) collect electrons from external circuit and reduct I3- to I-. The conventional CEs are thermally decomposed Pt on fluorine-doped tin oxide (FTO) glass substrates, which have shown excellent performance and stability. However, Pt is not suitable in terms of cost effect. In this report, we demonstrated that nickel sulfide thin films by atomic layer deposition (ALD)-using Nickel(1-dimethylamino-2-methyl-2-butanolate)2 and hydrogen sulfide at low temperatures of $90-200^{\circ}C$-could be good CEs in DSCs. Notably, ALD allows the thin films to grow with good reproducibility, precise thickness control and excellent conformality at the angstrom or monolayer level. The nickel sulfide films were characterized using X-ray photoelectron spectroscopy, scanning electron microscopy, X-ray diffraction, hall measurements and cyclic voltammetry. The ALD grown nickel sulfide thin films showed high catalytic activity for the reduction of I3- to I- in DSC. The DSCs with the ALD-grown nickel sulfide thin films as CEs showed the solar cell efficiency of 7.12% which is comparable to that of the DSC with conventional Pt coated counter electrode (7.63%).

  • PDF

Characteristic Investigation of External Parameters for Fault Diagnosis Reference Model Input of DC Electrolytic Capacitor (DC 전해 커패시터의 고장진단 기준모델 입력을 위한 외부변수의 특성 고찰)

  • Park, Jong-Chan;Shon, Jin-Geun
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.61 no.4
    • /
    • pp.186-191
    • /
    • 2012
  • DC Bus Electrolytic capacitors have been widely used in power conversion system because they can achieve high capacitance and voltage ratings with volumetric efficiency and low cost. This type of capacitors have been traditionally used for filtering, voltage smoothing, by-pass and other many applications in power conversion circuits requiring a cost effective and volumetric efficiency components. Unfortunately, electrolytic capacitors are some of the weakest components in power electronic converter. Many papers have proposed different methods or algorithms to determinate the ESR and/or capacitance C for fault diagnosis of the electrolytic capacitor. However, both ESR and C vary with frequency and temperature. Accurate knowledge of both values at the capacitors operating conditions is essential to achieve the best reference data of fault judgement. According to parameter analysis, the capacitance increases with temperature and the ESR decreases. Higher frequencies make the ESR and C to decrease. Analysis results show that the proposed electrolytic capacitor parameter estimation technique can be applied to reference signal of capacitor diagnosis systems successfully.

Performance Comparison of Block-based Distortion Estimations for FRUC Techniques (FRUC 기술을 위한 블록별 왜곡 크기 추정기법의 성능비교)

  • Kim, Jin-Soo
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2011.10a
    • /
    • pp.927-929
    • /
    • 2011
  • Since DVC (Distributed Video Coding) and FRUC (Frame Rate Up Conversion) techniques need to have an efficient motion compensated frame interpolation algorithms. Conventional works of these applications have mainly focused on the performance improvement of overall system. But, in some applications, it is necessary to evaluate how well the MCI (Motion Compensated Interpolation) frame matches the original frame. For this aim, this paper deals with the modeling methods for evaluating the block-based matching cost. First, several matching criteria, which have already been dealt with the motion compensated frame interpolation, are introduced and then combined to make estimate models for the size of MSE (Mean Square Error) noise of the MCI frame to original one. Through computer simulations, it is shown that the block-based cost evaluation models are tested and can be effectively used for estimating the MSE noise.

  • PDF

Fabrication of CIGS/CZTS Thin Films Solar Cells by Non-vacuum Process (비진공 방법에 의한 CIGS/CZTS계 박막 태양전지 제조)

  • Yoo, Dayoung;Lee, Dongyun
    • Korean Journal of Materials Research
    • /
    • v.28 no.12
    • /
    • pp.748-757
    • /
    • 2018
  • Inorganic semiconductor compounds, e.g., CIGS and CZTS, are promising materials for thin film solar cells because of their high light absorption coefficient and stability. Research on thin film solar cells using this compound has made remarkable progress in the last two decades. Vacuum-based processes, e.g., co-evaporation and sputtering, are well established to obtain high-efficiency CIGS and/or CZTS thin film solar cells with over 20 % of power conversion. However, because the vacuum-based processes need high cost equipment, they pose technological barriers to producing low-cost and large area photovoltaic cells. Recently, non-vacuum based processes, for example the solution/nanoparticle precursor process, the electrodeposition method, or the polymer-capped precursors process, have been intensively studied to reduce capital expenditure. Lately, over 17 % of energy conversion efficiency has been reported by solution precursors methods in CIGS solar cells. This article reviews the status of non-vacuum techniques that are used to fabricate CIGS and CZTS thin films solar cells.

Study on optimal treatment payment by cost accounting in the artificiality kidney center in medical institutions (의료기관 인공신장실의 원가계산에 의한 적정수가에 관한 연구)

  • Moon, Seung-Kwon;Lee, Yun-Seok
    • Korea Journal of Hospital Management
    • /
    • v.18 no.2
    • /
    • pp.81-103
    • /
    • 2013
  • This study is to research cost accounting practice and to analyze propriety of patients' medical payment in artificiality kidney center. The researched cost datum of the year 2012 are as follows. - Hemodialysis medical treatment was reimbursed as much as 158,001 won in case of health insured patients, but payed-off as much as 135,810 won. - The average figure of the total hospitals and clinic center is 1,603,303 won, and one time cost of hemodialysis treatment is 154,487 won. Optimal treatment pay are suggested as follows. First, Regardless of the notified classification from MOHW(Ministry of Health and Welfare), 136,000 won of fixed price payment classification needs to be reclassified by patients, severity and tobe rearranged by fixed price payment system of hospitals. Second, Fixed payment code notified by the Ministry of Health and Welfare is recommended to be simplifies and to reflect according to contents of the medical treatment rendered to patients. Third, Establishment of artificial kidney center has to be risk managed because of its huge investment. Fourth, Cost analysis model has to be maintained as basis together with appropriate application of conversion index model mixed with SGR model.

  • PDF

Implementation of cost-effective wireless photovoltaic monitoring module at panel level

  • Jeong, Jin-Doo;Han, Jinsoo;Lee, Il-Woo;Chong, Jong-Wha
    • ETRI Journal
    • /
    • v.40 no.5
    • /
    • pp.664-676
    • /
    • 2018
  • Given the rapidly increasing market penetration of photovoltaic (PV) systems in many fields, including construction and housing, the effective maintenance of PV systems through remote monitoring at the panel level has attracted attention to quickly detect faults that cause reductions in yearly PV energy production, and which can reduce the whole-life cost. A key point of PV monitoring at the panel level is cost-effectiveness, as the installation of the massive PV panels that comprise PV systems is showing rapid growth in the market. This paper proposes an implementation method that involves the use of a panel-level wireless PV monitoring module (WPMM), and which assesses the cost-effectiveness of this approach. To maximize the cost-effectiveness, the designed WPMM uses a voltage-divider scheme for voltage metering and a shunt-resistor scheme for current metering. In addition, the proposed method offsets the effect of element errors by extracting calibration parameters. Furthermore, a design method is presented for portable and user-friendly PV monitoring, and demonstration results using a commercial 30-kW PV system are described.

Genetics of Residual Feed Intake in Cattle and Pigs: A Review

  • Hoque, M.A.;Suzuki, K.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.22 no.5
    • /
    • pp.747-755
    • /
    • 2009
  • The feed resource for animals is a major cost determinant for profitability in livestock production enterprises, and thus any effort at improving the efficiency of feed use will help to reduce feed cost. Feed conversion ratio, expressed as feed inputs per unit output, is a traditional measure of efficiency that has significant phenotypic and genetic correlations with feed intake and growth traits. The use of ratio traits for genetic selection may cause problems associated with prediction of change in the component traits in future generations. Residual feed intake, a linear index, is a trait derived from the difference between actual feed intake and that predicted on the basis of the requirements for maintenance of body weight and production. Considerable genetic variation exists in residual feed intake for cattle and pigs, which should respond to selection. Phenotypic independence of phenotypic residual feed intake with body weight and weight gain can be obligatory. Genetic residual feed intake is genetically independent of its component traits (body weight and weight gain). Genetic correlations of residual feed intake with daily feed intake and feed conversion efficiency have been strong and positive in both cattle and pigs. Residual feed intake is favorably genetically correlated with eye muscle area and carcass weight in cattle and with eye muscle area and backfat in pigs. Selection to reduce residual feed intake (excessive intake of feed) will improve the efficiency of feed and most of the economically important carcass traits in cattle and pigs. Therefore, residual feed intake can be used to replace traditional feed conversion ratio as a selection criterion of feed efficiency in breeding programs. However, further studies are required on the variation of residual feed intake during different developmental stage of production.

Bi-Directional Buck-Boost Forward Converter for Photovoltaic Module type Power Conditioning System (태양광 모듈형 전력조절기를 위한 양방향 벅-부스트 포워드 컨버터)

  • Kim, Kyoung-Tak;Jeon, Young-Tae;Park, Joung-Hu
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.21 no.4
    • /
    • pp.335-342
    • /
    • 2016
  • This paper proposes an energy storage-assisted, series-connected module-integrated power conversion system that integrates a photovoltaic power conditioner and a charge balancing circuit. In conventional methods, a photovoltaic power conditioner and a cell-balancing circuit are needed for photovoltaic systems with energy storage devices, but they cause a complex configuration and high cost. Moreover, an imbalanced output voltage of the module-integrated converter for PV panels can be a result of partial shading. Partial shading can lead to the fault condition of the boost converter in shaded modules and high voltage stresses on the devices in other modules. To overcome these problems, a bidirectional buck-boost converter with an integrated magnetic device operating for a charge-balancing circuit is proposed. The proposed circuit has multiple secondary rectifiers with inductors sharing a single magnetic core, which works as an inductor for the main bidirectional charger/discharger of the energy storage. The secondary rectifiers operate as a cell-balancing circuit for both energy storage and the series-connected multiple outputs of the module-integrated converter. The operating principle of the cell-balancing power conversion circuit and the power stage design are presented and validated by PSIM simulation for analysis. A hardware prototype with equivalent photovoltaic modules is implemented for verification. The results verify that the modularized photovoltaic power conversion system in the output series with an energy storage successfully works with the proposed low-cost bidirectional buck-boost converter comprising a single magnetic device.

Wave energy conversion utilizing vertical motion of water in the array of water chambers aligned in the direction of wave propagation

  • Hadano, Kesayoshi;Lee, Ki Yeol;Moon, Byung Young
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.9 no.3
    • /
    • pp.239-245
    • /
    • 2017
  • As a new technical approach, wave energy converter by using vertical motion of water in the multiple water chambers were developed to realize actual wave power generation as eco-environmental renewable energy. And practical use of wave energy converter was actually to require the following conditions: (1) setting up of the relevant device and its application to wave power generation in case that severe wave loading is avoided; (2) workability in installation and maintenance operations; (3) high energy conversion potential; and (4) low cost. In this system, neither the wall(s) of the chambers nor the energy conversion device(s) are exposed to the impulsive load due to water wave. Also since this system is profitable when set along the jetty or along a long floating body, installation and maintenance are done without difficulty and the cost is reduced. In this paper, we describe the system which consists of a float, a shaft connected with another shaft, a rack and pinion arrangement, a ratchet mechanism, and rotary type generator(s). Then, we present the dynamics model for evaluating the output electric power, and the results of numerical calculation including the effect of the phase shift of up/down motion of the water in the array of water chambers aligned along the direction of wave propagation.