• Title/Summary/Keyword: Convergent Divergent Nozzle

Search Result 50, Processing Time 0.025 seconds

Numerical Study of the Thrust Vectoring Characteristics in a Two-Dimensional Convergent Divergent Nozzle (2차원 축소확대노즐의 추력편향특성 수치해석연구)

  • Kang, Hyung Seok;Choi, Seong Man;Oh, Seong Hwan
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.17 no.2
    • /
    • pp.94-104
    • /
    • 2013
  • A numerical analysis has been conducted to determine the pitch thrust vectoring characteristics of a two-dimensional convergent divergent exhaust nozzle for supersonic aircraft application. The numerical analysis was done by using Fluent and verified by the experimental test results. Analysis was performed with pitch angle of $0^{\circ}$ and $20^{\circ}$ each at the ambient temperature condition. To see the effect of a ratio of pitch flap length and pitch flap height, the ratio was varied from 0.5 to 2.5. The numerical analysis shows that pitch thrust is changed greatly with pitch flap length. The big difference of the pitch thrust with pitch flap length is due to the shock interactions in the nozzle.

레이져 절단에서 노즐이 미치는 영향

  • 이호준;김재도
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1992.10a
    • /
    • pp.81-85
    • /
    • 1992
  • Quality of cut is strongly dependent on the cutting pressure, so this relationship can be identified by pressure measuring system. In this paper, the experiments presented were performed with the devised pressure measuring system and the laser cutting of STS 304. Convergent type and convergent-divergent type nozzle were used for pressure variation of the distance between nozzle and workpiece. In laser cutting of STS 304, 1.0 kW CO $\_$2/ laser used. The convergent type nozzle(1.0 mm diameter) pressured above 3 kgf/cm $\^$2/, the MSD(Mach Shock Disk) created, which caused the the pressure variations of the distance between nozzle and workpiece. The maximum cutting pressure exists in accordance with the variation of distance. In spite of far distance the maximum cutting pressure is achieved by using the pressure measuring system. The higher cutting pressure beneath the workpiece the less quantity of dross and the kerf width. Since the higher cutting pressure helps to remove the quantity of dross and to stop the exothermic energy into the material. The optimum laser cutting parameter of STS 304(2.0 mm thickness) with the convergent type nozzle(1.0 mm diameter)is 0.75 mm and 2.5 mm distance between nozzle and workpiece, 4 kgf/cm $\^$2/ cutting pressure. In 3.0 mm thickness case, 1.5 mm and 2.25 mm distance is achieved for good quality.

Assessment of Turbulence Models with Compressibility Correction for Large Flow Separation in a Supersonic Convergent-Divergent Rectangular Nozzle (강한 박리 유동을 동반한 초음속 수축-확장 사각 노즐 유동에 적합한 난류 모델과 압축성 보정 모델의 평가)

  • Lee, Juyong;Shin, Junsu;Sung, Hong-Gye
    • Journal of Aerospace System Engineering
    • /
    • v.12 no.5
    • /
    • pp.40-47
    • /
    • 2018
  • The objective of this study is to investigate the turbulence models with compressibility correction for large separation-flow in a supersonic convergent-divergent rectangular nozzle. As turbulence models, Yang and Shih's Low-Re $k-{\varepsilon}$ model, Mener's $k-{\omega}$ SST model and Wilcox's $k-{\omega}$model were evaluated. In order to get a significant compressible effects, Sarkar and Wilcox compressibility correction models were applied to the turbulence models respectively. Also, the simulation results were compared with experimental data. The turbulence model with compressibility correction model improves both of shock position and pressure recovery, but deteriorates the length of Mach disk.

The Influence of the Diffuser Divergence Angle on the Critical Pressure of a Critical Nozzle (디퓨저 확대각이 임계노즐의 임계압력비에 미치는 영향)

  • Kim Jae Hyung;Kim Heuy Dong;Park Kyung Am
    • Proceedings of the KSME Conference
    • /
    • 2002.08a
    • /
    • pp.131-134
    • /
    • 2002
  • Compressible gas flow through a convergent-divergent nozzle is choked at the nozzle throat under a certain critical pressure ratio, and then being no longer dependent on the pressure change in the downstream flow field. In practical, the flow field at the divergent part of the critical nozzle can affect the effective critical pressure ratio. In order to investigate details of flow field through a critical nozzle, the present study solves the axisymmetric, compressible, Wavier-Stokes equations. The diameter of the nozzle throat is D=8.26mm and the half angle of the diffuser is changed between $2^{\circ}\;and\;10^{\circ}$ Computational results are compared with the previous experimental ones. The results obtained show that the divergence angle is significantly influences the critical pressure ratio and the present computations predict the experimented discharge coefficient and critical pressure ratio with a good accuracy. It is also found that a nozzle with the half angle of $4^{\circ}$ nearly predicts the theoretical critical pressure ratio.

  • PDF

An Experimental Study on Noise Phenomena in Supersonic Over-expanded Jet (초음속 과팽창 제트에서 발생하는 소음현상에 관한 실험적 연구)

  • Kweon Yong-Hun;Lim Chae-Min;Kim Heuy-Dong
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2006.05a
    • /
    • pp.337-340
    • /
    • 2006
  • The present paper describes an experimental work to investigate a transonic resonance in supersonic jet that is discharged from a convergent-divergent nozzle. When the nozzle m: at low nozzle pressure ratios, the shock occurs within the divergent section of the nozzle. The transonic resonance of a jet flow is generated by an emission of strong acoustic tones due to the unsteadiness of the shock. A Schlieren optical system is used to visualize the supersonic jet flow In order to specify the flow resonance of a jet, acoustic measurements are performed to obtain noise spectra. The acoustic characteristics of transonic resonace are compared with those of screech tones. The results obtained show that unlike screech frequency, the transonic reso- nace frequency somewhat increases with increasing the nozzle pressure ratio.

  • PDF

Effect of Nozzle Lip Thickness on the Characteristics of Supersonic Jet Noise (노즐립 두께가 초음속 제트의 소음특성에 미치는 영향)

  • Kweon, Yong-Hun;Aoki, Toshiyuki;Kim, Heuy-Dong
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.520-525
    • /
    • 2003
  • Supersonic jet issuing from a nozzle invariably cause high-frequency noises. These consist of three principal components ; the turbulent mixing noise, the broadband shock-associated noise, and the screech tone. In present study, it was experimentally investigated to the effect of nozzle lip thickness on the characteristics of supersonic jet noise. The convergent-divergent nozzle of a design Mach number 2.0 was used in experiment. With three different nozzle-lip thicknesses, the jet pressure ratio was varied in the range between 2.0 and 12.0. Acoustic measurements were conducted by microphones in an anechoic room, and the major structures of the supersonic jets were visualized by a Schlieren optical system to investigate the effect of nozzle lip thickness. The measured results show that the characteristics of supersonic jet noise, such as overall sound pressure level (OASPL) and screech frequency, strongly depend upon the thickness of nozzle-lip.

  • PDF

An Experimental Study on the Screech Tone in Supersonic Jet (초음속 제트의 스크리치 톤에 관한 실험적 연구)

  • Lim, Chae-Min;Kwon, Yong-Hun;Aoki, Toshiyuki;Kim, Heuy-Dong
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.2023-2028
    • /
    • 2004
  • The effects of nozzle-lip thickness on the relationship between screech tone and broadband shock-associated noise were experimentally investigated using a convergent-divergent nozzle with a design Mach number of 2.0. Overall sound pressure levels (OASPL) and noise spectra were obtained at far-field locations. Schlieren optical system was used to visualize the flow-fields of supersonic jets. A baffle plate was installed at the exit of the nozzle and its size was varied to obtain different nozzle-lip thicknesses. Experiment was carried out over a wide range of nozzle pressure ratios from 2.0 and 18.0, which corresponds to over- and under-expanded conditions. The results obtained clearly show that the screech tones are influenced by the nozzle-lip thickness. It is found that the screech tone and its peak amplitude are strongly dependent on whether the jet is over-expanded and under-expanded at the nozzle exit.

  • PDF

Numerical simulations of convergent-divergent nozzle and straight cylindrical supersonic diffuser

  • Mehta, R.C.;Natarajan, G.
    • Advances in aircraft and spacecraft science
    • /
    • v.1 no.4
    • /
    • pp.399-408
    • /
    • 2014
  • The flowfields inside a contour and a conical nozzle exhausting into a straight cylindrical supersonic diffuser are computed by solving numerically axisymmetric turbulent compressible Navier-Stokes equations for stagnation to ambient pressure ratios in the range 20 to 34. The diffuser inlet-to-nozzle throat area ratio and exit-to-throat area ratio are 21.77, and length-to-diameter ratio of the diffuser is 5. The flow characteristics of the conical and contour nozzle are compared with the help of velocity vector and Mach contour plots. The variations of Mach number along the centre line and wall of the conical nozzle, contour nozzle and the straight supersonic diffuser indicate the location of the shock and flow characteristics. The main aim of the present analysis is to delineate the flowfields of conical and contour nozzles operating under identical conditions and exhausting into a straight cylindrical supersonic diffuser.

Thrust Vectoring Control by Injection of Secondary Jets Inside Supersonic Nozzle (초음속 노즐 내부 이차제트 분출을 통한 추력편향 제어에 관한 연구)

  • Yoon, Sang-Hoon;Kim, Kuk-Jin;Min, Seong-Kyu;Lee, Yeol;Chun, Dong-Yeon
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.349-352
    • /
    • 2008
  • Thrust vectoring control by injection of secondary jet inside a convergent-divergent supersonic nozzle was studied by both experimentally and computationally. For various stagnation pressure of the secondary jet injected at a specific location(12 mm-downstream of throat) in the divergent section of nozzle, the characteristics of thrust vectoring were observed. Present numerical results were compared with previous investigators' results and Schlieren flow visualizations for the identical boundary conditions, and it showed a qualitatively good agreement. It was also noticed that the characteristics of thrust vectoring is strongly related to the reflection structure of oblique shock inside nozzle, ie., the pressure ratio of the secondary jet, SPR.

  • PDF

Influence of a isolator in supersonic nozzle on thermal choking (초음속 노즐의 분리부가 열폐색에 미치는 영향)

  • Kim, Sangwoo;Kim, Youngcheol;Kim, Jangwoo
    • Journal of Energy Engineering
    • /
    • v.21 no.3
    • /
    • pp.237-242
    • /
    • 2012
  • This study presents numerical solutions of the two-dimensional Navier-Stokes equations for supersonic unsteady flow in a convergent-divergent nozzle with a isolator. The TVD scheme in generalized coordinates is employed in order to calculate the moving shock waves caused by thermal choking. We discuss on transient characteristics, unstart phenomena, fluctuations of specific thrust caused by thermal choking and effects of isolator. The adverse pressure gradient caused by heat addition brings about separation of the wall boundary layers and formation of the oblique shock wave that proceed to upstream. The proceeding speed of the oblique shock wave to upstream direction for the convergent-divergent nozzle with isolator is lower than that for the nozzle without isolator.