• 제목/요약/키워드: Convergence safety engineering

검색결과 847건 처리시간 0.032초

Advanced two-level CMFD acceleration method for the 3D whole-core high-fidelity neutron adjoint transport calculation

  • Zhu, Kaijie;Hao, Chen;Xu, Yunlin
    • Nuclear Engineering and Technology
    • /
    • 제53권1호
    • /
    • pp.30-43
    • /
    • 2021
  • In the 2D/1D method, a global adjoint CMFD based on the generalized equivalence theory is built to synthesize the 2D radial MOC adjoint and 1D axial NEM adjoint calculation and also to accelerate the iteration convergence of 3D whole-core adjoint transport calculation. Even more important, an advanced yet accurate two-level (TL) CMFD acceleration technique is proposed, in which an equivalent one-group adjoint CMFD is established to accelerate the multi-group adjoint CMFD and then to accelerate the 3D whole-core adjoint transport calculation efficiently. Based on these method, a new code is developed to perform 3D adjoint neutron flux calculation. Then a set of VERA and C5G7 benchmark problems are chosen to verify the capability of the 3D adjoint calculations and the effectiveness of TL CMFD acceleration. The numerical results demonstrate that acceptable accuracy of 2D/1D adjoint calculations and superior acceleration of TL CMFD are achievable.

Evaluation of Source Identification Method Based on Energy-Weighting Level with Portal Monitoring System Using Plastic Scintillator

  • Lee, Hyun Cheol;Koo, Bon Tack;Choi, Chang Il;Park, Chang Su;Kwon, Jeongwan;Kim, Hong-Suk;Chung, Heejun;Min, Chul Hee
    • Journal of Radiation Protection and Research
    • /
    • 제45권3호
    • /
    • pp.117-129
    • /
    • 2020
  • Background: Radiation portal monitors (RPMs) involving plastic scintillators installed at the border inspection sites can detect illicit trafficking of radioactive sources in cargo containers within seconds. However, RPMs may generate false alarms because of the naturally occurring radioactive materials. To manage these false alarms, we previously suggested an energy-weighted algorithm that emphasizes the Compton-edge area as an outstanding peak. This study intends to evaluate the identification of radioactive sources using an improved energy-weighted algorithm. Materials and Methods: The algorithm was modified by increasing the energy weighting factor, and different peak combinations of the energy-weighted spectra were tested for source identification. A commercialized RPM system was used to measure the energy-weighted spectra. The RPM comprised two large plastic scintillators with dimensions of 174 × 29 × 7 ㎤ facing each other at a distance of 4.6 m. In addition, the in-house-fabricated signal processing boards were connected to collect the signal converted into a spectrum. Further, the spectra from eight radioactive sources, including special nuclear materials (SNMs), which were set in motion using a linear motion system (LMS) and a cargo truck, were estimated to identify the source identification rate. Results and Discussion: Each energy-weighted spectrum exhibited a specific peak location, although high statistical fluctuation errors could be observed in the spectrum with the increasing source speed. In particular, 137Cs and 60Co in motion were identified completely (100%) at speeds of 5 and 10 km/hr. Further, SNMs, which trigger the RPM alarm, were identified approximately 80% of the time at both the aforementioned speeds. Conclusion: Using the modified energy-weighted algorithm, several characteristics of the energy weighted spectra could be observed when the used sources were in motion and when the geometric efficiency was low. In particular, the discrimination between 60Co and 40K, which triggers false alarms at the primary inspection sites, can be improved using the proposed algorithm.

심근 세포의 전기생리학적 특징을 이용한 인공 신경망 기반 약물의 심장독성 평가 (An Artificial Neural Network-Based Drug Proarrhythmia Assessment Using Electrophysiological Characteristics of Cardiomyocytes)

  • 유예담;정다운;;임기무
    • 대한의용생체공학회:의공학회지
    • /
    • 제42권6호
    • /
    • pp.287-294
    • /
    • 2021
  • Cardiotoxicity assessment of all drugs has been performed according to the ICH guidelines since 2005. Non-clinical evaluation S7B has focused on the hERG assay, which has a low specificity problem. The comprehensive in vitro proarrhythmia assay (CiPA) project was initiated to correct this problem, which presented a model for classifying the Torsade de pointes (TdP)-induced risk of drugs as biomarkers calculated through an in silico ventricular model. In this study, we propose a TdP-induced risk group classifier of artificial neural network (ANN)-based. The model was trained with 12 drugs and tested with 16 drugs. The ANN model was performed according to nine features, seven features, five features as an individual ANN model input, and the model with the highest performance was selected and compared with the classification performance of the qNet input logistic regression model. When the five features model was used, the results were AUC 0.93 in the high-risk group, AUC 0.73 in the intermediate-risk group, and 0.92 in the low-risk group. The model's performance using qNet was lower than the ANN model in the high-risk group by 17.6% and in the low-risk group by 29.5%. This study was able to express performance in the three risk groups, and it is a model that solved the problem of low specificity, which is the problem of hERG assay.

Preconditioned Jacobian-free Newton-Krylov fully implicit high order WENO schemes and flux limiter methods for two-phase flow models

  • Zhou, Xiafeng;Zhong, Changming;Li, Zhongchun;Li, Fu
    • Nuclear Engineering and Technology
    • /
    • 제54권1호
    • /
    • pp.49-60
    • /
    • 2022
  • Motivated by the high-resolution properties of high-order Weighted Essentially Non-Oscillatory (WENO) and flux limiter (FL) for steep-gradient problems and the robust convergence of Jacobian-free Newton-Krylov (JFNK) methods for nonlinear systems, the preconditioned JFNK fully implicit high-order WENO and FL schemes are proposed to solve the transient two-phase two-fluid models. Specially, the second-order fully-implicit BDF2 is used for the temporal operator and then the third-order WENO schemes and various flux limiters can be adopted to discrete the spatial operator. For the sake of the generalization of the finite-difference-based preconditioning acceleration methods and the excellent convergence to solve the complicated and various operational conditions, the random vector instead of the initial condition is skillfully chosen as the solving variables to obtain better sparsity pattern or more positions of non-zero elements in this paper. Finally, the WENO_JFNK and FL_JFNK codes are developed and then the two-phase steep-gradient problem, phase appearance/disappearance problem, U-tube problem and linear advection problem are tested to analyze the convergence, computational cost and efficiency in detailed. Numerical results show that WENO_JFNK and FL_JFNK can significantly reduce numerical diffusion and obtain better solutions than traditional methods. WENO_JFNK gives more stable and accurate solutions than FL_JFNK for the test problems and the proposed finite-difference-based preconditioning acceleration methods based on the random vector can significantly improve the convergence speed and efficiency.

관형 요도 조직 대상 내시경적 레이저 조사 조건 연구 (Endoscopic Laser Irradiation Condition of Urethra in Tubular Structure)

  • 신화랑;임성희;이예찬;강현욱
    • 대한의용생체공학회:의공학회지
    • /
    • 제44권1호
    • /
    • pp.85-91
    • /
    • 2023
  • Stress urinary incontinence (SUI) occurs when abdominal pressure increases, such as sneezing, exercising, and laughing. Surgical and non-surgical treatments are the common methods of SUI treatment; however, the conventional treatments still require continuous and invasive treatment. Laser have been used to treat SUI, but excessive temperature increase often causes thermal burn on urethra tissue. Therefore, the optimal conditions must be considered to minimize the thermal damage for the laser treatment. The current study investigated the feasibility of the laser irradiation condition for SUI treatment using non-ablative 980 nm laser from a safety perspective through numerical simulations. COMSOL Multiphysics was used to analyze the numerical simulation model. The Pennes bioheat equation with the Beer's law was used to confirm spatio-temporal temperature distributions, and Arrhenius equation defined the thermal damage caused by the laser-induced heat. Ex vivo porcine urethral tissue was tested to validate the extent of both temperature distribution and thermal damage. The temperature distribution was symmetrical and uniformly observed in the urethra tissue. A muscle layer had a higher temperature (28.3 ℃) than mucosal (23.4 ℃) and submucosal layers (25.5 ℃). MT staining revealed no heat-induced collagen and muscle damage. Both control and treated groups showed the equivalent thickness and area of the urethral mucosal layer. Therefore, the proposed numerical simulation can predict the appropriate irradiation condition (20 W for 15 s) for the SUI treatment with minimal temperature-induced tissue.

V2X 및 환경 센서 융합 기반 교차로 안전 시스템 알고리즘 개발 (Development of Control Algorithm for Intersection Safety System Using the Fusion of V2X and Environmental Sensors)

  • 박만복;이상현;전시범;기석철;김정범;기창돈;김규원;이경수
    • 한국자동차공학회논문집
    • /
    • 제22권5호
    • /
    • pp.126-135
    • /
    • 2014
  • This paper describes the development and verification of control algorithms for V2X and environmental sensor integrated intersection support and safety systems. The objective of the research is to develop core technologies for effective fusion of V2X and environmental sensors and to develop new safety function for intersection safety. One of core technologies is to achieve the improvement of GPS accuracy, and the other is to develop the algorithm of a vehicle identification which matches all data from V2X, vehicle sensors and environmental sensors to specific vehicles. A intersection optimal pass (IOP) algorithm is designed based on these core technologies. IOP recommends appropriate speed to pass the intersection in the consideration of traffic light signal and preceeding vehicle existence. Another function is developed to prevent a collision avoidance when car crash caused by traffic violation of surrounding vehicles is expected. Finally all functions are implemented and tested in three test vehicles. It is shown that IOP can support convenient and comfortable driving with recommending optimal pass speed and collision avoidance algorithm can effectively prevent collision caused by traffic sign violation of surrounding vehicles.

영과잉을 고려한 중심상업지구 교통사고모형 개발에 관한 연구 (Safety Performance Functions for Central Business Districts Using a Zero-Inflated Model)

  • 이상혁;우용한
    • 한국도로학회논문집
    • /
    • 제18권4호
    • /
    • pp.83-92
    • /
    • 2016
  • PURPOSES : The purpose of this study was to develop safety performance functions (SPFs) that use zero-inflated negative binomial regression models for urban intersections in central business districts (CBDs), and to compare the statistical significance of developed models against that of regular negative binomial regression models. METHODS : To develop and analyze the SPFs of intersections in CBDs, data acquisition was conducted for dependent and independent variables in areas of study. We analyzed the SPFs using zero-inflated negative binomial regression model as well as regular negative binomial regression model. We then compared the results by analyzing the statistical significance of the models. RESULTS : SPFs were estimated for all accidents and injury accidents at intersections in CBDs in terms of variables such as AADT, Number of Lanes at Major Roads, Median Barriers, Right Turn with an Exclusive Turn Lane, Turning Guideline, and Front Signal. We also estimated the log-likelihood at convergence and the likelihood ratio of SPFs for comparing the zero-inflated model with the regular model. In he SPFs, estimated log-likelihood at convergence and the likelihood ratio of the zero-inflated model were at -836.736, 0.193 and -836.415, 0.195. Also estimated the log-likelihood at convergence and likelihood ratio of the regular model were at -843.547, 0.187 and -842.631, 0.189, respectively. These figures demonstrate that zero-inflated negative binomial regression models can better explain traffic accidents at intersections in CBDs. CONCLUSIONS : SPFs that use a zero-inflated negative binomial regression model demonstrate better statistical significance compared with those that use a regular negative binomial regression model.

LPG 탱크로리 폭발시 파편 형상에 따른 비산거리 산정에 관한 연구 (A Study on the decision of Scattering distance by Shape of Fragments in LPG Tank lorry Explosion)

  • 이영진;황용우;이익모;문진영
    • 한국방재안전학회논문집
    • /
    • 제10권2호
    • /
    • pp.29-34
    • /
    • 2017
  • LPG는 사고발생시 사람이나 환경에 치명적인 피해를 가져올 수 있으므로 많은 주의가 필요한 물질이다. LPG는 고정시설 뿐 아니라 운송시설에서도 사고가 빈번하게 발생하며, 그 중 LPG 탱크로리의 사고가 가장 많다. LPG 탱크로리가 운송중 전도되었을 때 LP가스는 2상(two phase) 상태로 누출되어, 대부분 기체로 누출되고 일부분 액체로 누출된다. 이때 누출된 기체도 공기보다 무겁기 때문에 아래로 가라앉게 되고, 누출이 계속된다면 증기운을 형성하여 점화원에 의해 폭발할 수도 있다. 본 연구에서는 LPG 탱크로리의 증기운 폭발 사고 발생시 파편에 대한 영향거리를 분석하여 대피거리를 제시함을 목적으로 한다. 파편의 비산반경 산출 결과, 최대 561m 비산하였다. 따라서 LPG 탱크로리의 누출시 대피하여야 하는 거리는 561 m 이상으로 설정하는 것이 필요하다고 판단된다.

Thermal-hydraulic safety analysis of radioisotope production in HANARO using MCNP6 and COMSOL multiphysics: A feasibility study

  • Taeyun Kim;Bo-Young Han;Seongwoo Yang;Jaegi Lee ;Gwang-Min Sun;Byung-Gun Park;Sung-Joon Ye
    • Nuclear Engineering and Technology
    • /
    • 제55권11호
    • /
    • pp.3996-4001
    • /
    • 2023
  • The High-flux Advanced Neutron Application Reactor (HANARO) produces radioisotopes (RIs) (131I, 192Ir, etc.) through neutron irradiation on various RI production targets. Among them, 177Lu and 166Ho are particularly promising owing to their theranostic characteristics that facilitate simultaneous diagnosis and treatment. Prior to neutron irradiation, evaluating the nuclear heating of the RI production target is essential for ensuring the thermal-hydraulic safety of HANARO. In this study, the feasibility of producing 177Lu and 166Ho using irradiation holes of HANARO was investigated in terms of thermal-hydraulic safety. The nuclear heating rates of the RI production target by prompt and delayed radiation were calculated using MCNP6. The calculated nuclear heating rates were used as an input parameter in COMSOL Multiphysics to obtain the temperature distribution in an irradiation hole. The degree of temperature increase of the 177Lu and 166Ho production targets satisfied the safety criteria of HANARO. The nuclear heating rates and temperature distribution obtained through the in silico study are expected to provide valuable insight into the production of 177Lu and 166Ho using HANARO.

건설기계 관계자 실태조사를 통한 사고 예방에 관한 연구 (A study on the accident prevention by a survey of people related to construction machinery)

  • 이반석;이영수;오태근
    • 문화기술의 융합
    • /
    • 제9권4호
    • /
    • pp.557-562
    • /
    • 2023
  • 국내에서는 건설용 리프트, 타워크레인, 이동식 크레인 등의 건설기계에 대한 제도적·관리적 문제점 파악을 통해 안전작업개선에 관한 여러 정부 정책이 시행됐지만 여전히 관련 재해는 줄어들고 있지 않다. 본 연구에서는 기존 연구에서 다루지 않았던 관리감독자, 안전관리자, 건설기계운전원의 안전작업에 대한 관점 차이를 확인하고 관련 안전교육에 대한 인식과 필요성에 대해 설문조사를 진행하였다. 조사결과 현장 작업자들이 작업에 투입되기 전 작업 방법, 안전수칙, 현장 위험요인의 인지 및 제거 등에 대한 효과적인 교육을 받았을 때 재해가 줄어들 것이라는 결론을 도출하였다.