• Title/Summary/Keyword: Convergence Diagnosis

Search Result 558, Processing Time 0.031 seconds

Fault Diagnosis of Induction Motor using Linear Predictive Coding and Deep Neural Network (LPC와 DNN을 결합한 유도전동기 고장진단)

  • Ryu, Jin Won;Park, Min Su;Kim, Nam Kyu;Chong, Ui Pil;Lee, Jung Chul
    • Journal of Korea Multimedia Society
    • /
    • v.20 no.11
    • /
    • pp.1811-1819
    • /
    • 2017
  • As the induction motor is the core production equipment of the industry, it is necessary to construct a fault prediction and diagnosis system through continuous monitoring. Many researches have been conducted on motor fault diagnosis algorithm based on signal processing techniques using Fourier transform, neural networks, and fuzzy inference techniques. In this paper, we propose a fault diagnosis method of induction motor using LPC and DNN. To evaluate the performance of the proposed method, the fault diagnosis was carried out using the vibration data of the induction motor in steady state and simulated various fault conditions. Experimental results show that the learning time of our proposed method and the conventional spectrum+DNN method is 139 seconds and 974 seconds each executed on the experimental PC, and our method reduces execution time by 1/8 compared with conventional method. And the success rate of the proposed method is 98.08%, which is similar to 99.54% of the conventional method.

An Improvement of Personalized Computer Aided Diagnosis Probability for Smart Healthcare Service System (스마트 헬스케어 서비스를 위한 통계학적 개인 맞춤형 질병예측 기법의 개선)

  • Min, Byung-won
    • Journal of Convergence Society for SMB
    • /
    • v.6 no.4
    • /
    • pp.79-84
    • /
    • 2016
  • A novel diagnosis scheme PCADP(personalized computer aided diagnosis probability) is proposed to overcome the problems mentioned above. PCADP scheme is a personalized diagnosis method based on ontology and it makes the bio-data analysis just a 'process' in the Smart healthcare service system. In addition, we offer a semantics modeling of the smart healthcare ontology framework in order to describe smart healthcare data and service specifications as meaningful representations based on this PCADP. The PCADP scheme is a kind of statistical diagnosis method which has real-time processing, characteristics of flexible structure, easy monitoring of decision process, and continuous improvement.

A Study for Diagnostic Agreement between Web-based Diagnosis Support System and Korean Medical Doctors' Diagnosis (웹기반 진단 보조 시스템의 진단 일치도 연구)

  • Seungyob Yi;Minji Kang;Hyun Jung Lim;WM Yang
    • Journal of Convergence Korean Medicine
    • /
    • v.6 no.1
    • /
    • pp.37-42
    • /
    • 2024
  • Objectives: This study aims to evaluate the clinical validity of the system by conducting a clinical study to assess the diagnostic agreement between the system and Korean medical doctors. Methods: This study was conducted from September 7, 2023, to December 7, 2023, across five Korean medicine institutions, involving 100 adult participants aged 20-64 who consented to participate. Participants first entered their symptoms into a web-based program, which utilized an AI-based algorithm to diagnose 36 types of pattern differentiation. Subsequently, Korean medical doctors conducted face-to-face diagnoses using the same 36 types. The diagnostic agreement between the system and the doctors' diagnoses was analyzed using descriptive statistical analysis, and the results were expressed as a percentage agreement. Results: Analysis of the diagnostic data from 100 participants revealed that the web-based diagnosis support system identified an average of 7.76±0.79 patterns per patient, while Korean medical doctors identified an average of 7.99±0.10 patterns per patient. The diagnostic agreement between the system and the doctors showed an average of 7.08±1.08 patterns per patient, with an overall diagnostic agreement rate of 88.57±13.31%. Conclusion: This study developed a web-based diagnosis support system for traditional Korean medicine and evaluated its clinical validity by assessing diagnostic agreement. Comparing the diagnoses of the system with those of Korean medical doctors for 100 patients, the system showed an approximately 89% agreement rate with the clinical diagnoses. The system holds potential for aiding Korean medical doctors in pattern differentiation diagnosis in clinical practice.

  • PDF

Development of a Lifetime Test Bench for Robot Reducers for Fault Diagnosis and Failure Prognostics (고장 진단 및 예지가 가능한 로봇용 감속기 내구성능평가 장치 개발)

  • Shin, Ju Seong;Kim, Ju Hyun;Kim, Jong Geol;Jin, Maolin
    • Journal of Drive and Control
    • /
    • v.16 no.3
    • /
    • pp.33-41
    • /
    • 2019
  • This study presents the development of a lifetime test bench for the strain wave reducer which is a precision gear reducer of the robot to realize fault diagnosis and failure prognostics. To this end, the lifetime test bench was designed to detect the vertical forward/reverse direction rotation load. Through the lifetime test bench, it is possible to apply the same load spectrum from robot working scenarios. We developed a data integration gateway for fault data collection. Through the development of dedicated software for fault diagnosis and failure prognostics, these data from vibration, noise and temperature sensors were collected and analyzed along with the operation of the lifetime evaluation.

Development of Intelligent Fault Diagnosis System for CIM (CIM 구축을 위한 지능형 고장진단 시스템 개발)

  • Bae, Yong-Hwan;Oh, Sang-Yeob
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.7 no.2
    • /
    • pp.199-205
    • /
    • 2004
  • This paper describes the fault diagnosis method to order to construct CIM in complex system with hierarchical structure similar to human body structure. Complex system is divided into unit, item and component. For diagnosing this hierarchical complex system, it is necessary to implement a special neural network. Fault diagnosis system can forecast faults in a system and decide from the signal information of current machine state. Comparing with other diagnosis system for a single fault, the developed system deals with multiple fault diagnosis, comprising hierarchical neural network (HNN). HNN consists of four level neural network, i.e. first is fault symptom classification and second fault diagnosis for item, third is symptom classification and forth fault diagnosis for component. UNIX IPC is used for implementing HNN with multitasking and message transfer between processes in SUN workstation with X-Windows (Motif). We tested HNN at four units, seven items per unit, seven components per item in a complex system. Each one neural network represents a separate process in UNIX operating system, information exchanging and cooperating between each neural network was done by message queue.

  • PDF

A study on the application and development direction of naval unit diagnosis system (해군 부대진단 제도의 적용과 발전방향에 대한 고찰)

  • Jang, Kyoung Sun;Lee, Yoou Kyung;Kwon, Pan Qum
    • Convergence Security Journal
    • /
    • v.20 no.1
    • /
    • pp.59-68
    • /
    • 2020
  • The purpose of this study is to consider ways to stabilize the naval unit diagnosis system that has been implemented for five years. Check the historical process and theoretical background of the naval unit diagnosis system. This is to confirm the future direction of the naval unit diagnosis system research. Therefore, the importance of this system is confirmed and the direction of development is explained through application method. In particular, the study suggested the scientific development of analytical methods, the development of analytical programs, the development of leadership diagnostic programs, the increase of personnel in the unit diagnosis team, and the acquisition of expertise and reliability. In order for the naval unit diagnosis system to develop, internal and external continuous research is required.

Automatic Machine Fault Diagnosis System using Discrete Wavelet Transform and Machine Learning

  • Lee, Kyeong-Min;Vununu, Caleb;Moon, Kwang-Seok;Lee, Suk-Hwan;Kwon, Ki-Ryong
    • Journal of Korea Multimedia Society
    • /
    • v.20 no.8
    • /
    • pp.1299-1311
    • /
    • 2017
  • Sounds based machine fault diagnosis recovers all the studies that aim to detect automatically faults or damages on machines using the sounds emitted by these machines. Conventional methods that use mathematical models have been found inaccurate because of the complexity of the industry machinery systems and the obvious existence of nonlinear factors such as noises. Therefore, any fault diagnosis issue can be treated as a pattern recognition problem. We present here an automatic fault diagnosis system of hand drills using discrete wavelet transform (DWT) and pattern recognition techniques such as principal component analysis (PCA) and artificial neural networks (ANN). The diagnosis system consists of three steps. Because of the presence of many noisy patterns in our signals, we first conduct a filtering analysis based on DWT. Second, the wavelet coefficients of the filtered signals are extracted as our features for the pattern recognition part. Third, PCA is performed over the wavelet coefficients in order to reduce the dimensionality of the feature vectors. Finally, the very first principal components are used as the inputs of an ANN based classifier to detect the wear on the drills. The results show that the proposed DWT-PCA-ANN method can be used for the sounds based automated diagnosis system.

A Convergence Study on the Organizational Diagnosis of Public Health Center using Six-Box Model (Six-Box model을 이용한 보건소 조직진단에 관한 융합연구)

  • Lee, Young-Ju;Kim, Chang-Gyu;Lee, Bo-Woo
    • Journal of the Korea Convergence Society
    • /
    • v.11 no.8
    • /
    • pp.55-61
    • /
    • 2020
  • This study was conducted to identify the organizational commitment to health centers in the city of G from September 1, 2018 to September 29, 2018, and empowerment, which is the output of the organization, and to examine organizational diagnosis using the Six-Box Model. In the organizational diagnosis of the health center using the Six-Box Model, the support area was 3.62 points, and the attitude toward change was 3.62 points, which was higher than other areas. In the organizational diagnosis according to gender, the scores of women were higher in males than in males. In the organizational diagnosis according to the type of jobs, the purpose, relationships, rewards, and area scores of nursing jobs were higher than those of other types of jobs. In the future, the public health center is a public institution that provides health administration and medical services to residents of the community, and it is necessary to improve the capacity of the organization through continuous health center organizational diagnosis.

An intelligent method for pregnancy diagnosis in breeding sows according to ultrasonography algorithms

  • Jung-woo Chae;Yo-han Choi;Jeong-nam Lee;Hyun-ju Park;Yong-dae Jeong;Eun-seok Cho;Young-sin, Kim;Tae-kyeong Kim;Soo-jin Sa;Hyun-chong Cho
    • Journal of Animal Science and Technology
    • /
    • v.65 no.2
    • /
    • pp.365-376
    • /
    • 2023
  • Pig breeding management directly contributes to the profitability of pig farms, and pregnancy diagnosis is an important factor in breeding management. Therefore, the need to diagnose pregnancy in sows is emphasized, and various studies have been conducted in this area. We propose a computer-aided diagnosis system to assist livestock farmers to diagnose sow pregnancy through ultrasound. Methods for diagnosing pregnancy in sows through ultrasound include the Doppler method, which measures the heart rate and pulse status, and the echo method, which diagnoses by amplitude depth technique. We propose a method that uses deep learning algorithms on ultrasonography, which is part of the echo method. As deep learning-based classification algorithms, Inception-v4, Xception, and EfficientNetV2 were used and compared to find the optimal algorithm for pregnancy diagnosis in sows. Gaussian and speckle noises were added to the ultrasound images according to the characteristics of the ultrasonography, which is easily affected by noise from the surrounding environments. Both the original and noise added ultrasound images of sows were tested together to determine the suitability of the proposed method on farms. The pregnancy diagnosis performance on the original ultrasound images achieved 0.99 in accuracy in the highest case and on the ultrasound images with noises, the performance achieved 0.98 in accuracy. The diagnosis performance achieved 0.96 in accuracy even when the intensity of noise was strong, proving its robustness against noise.

Design of a Real-Time Facility Diagnosis & Complex Data Management System Using IT Convergence Technology (IT융합기술을 활용한 실시간 설비진단 및 복합정보 관리시스템 설계)

  • Kang, Moon-Sik
    • Journal of the Korea Society of Computer and Information
    • /
    • v.19 no.5
    • /
    • pp.53-60
    • /
    • 2014
  • With the rapid development of IT technology, recently, the development of IT convergence technology related to the facility diagnosis is prevalent, and the study for the efficient integrated management scheme is required to handle all relevant information, from the design to the maintenance, including the stage of repair. In this paper, an efficient scheme to process the complex data for the facility and its diagnosis is proposed based on IT convergence technique and the real-time complex data management is designed. In order to evaluate the performance of the proposed system, the real-time management system is designed for a particular facility, and the comparative results show the good performance of the proposed system.