• 제목/요약/키워드: Conventional grinding wheel

검색결과 35건 처리시간 0.028초

범용연삭기에서 휠속도를 이용한 Chatter 주파수에 관한 연구 (The Study of Chatter Frequency Using Wheel Speed In Conventional Grinding Machine)

  • 송지복;김남경;이종렬
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1997년도 춘계학술대회 논문집
    • /
    • pp.977-981
    • /
    • 1997
  • Because the chatter vibration is a main factor to damage on the quality, The cure is require peticually in cylinderical plunge grinding. The chatter vibration is with wheel speed, workpiece speed and infreed rate. Therefore, in this study, we expressed more credible chatter frequency in accordiance with wheel speed by FFT after accereleration sensing.

  • PDF

실리콘 웨이퍼 연삭의 형상 시뮬레이션 (Profile Simulation in Mono-crystalline Silicon Wafer Grinding)

  • 김상철;이상직;정해도;최헌종;이석우
    • 한국정밀공학회지
    • /
    • 제21권10호
    • /
    • pp.26-33
    • /
    • 2004
  • Ultra precision grinding technology has been developed from the refinement of the abrasive, the development of high stiffness equipment and grinding skill. The conventional wafering process which consists of lapping, etching, 1 st, 2nd and 3rd polishing has been changed to the new process which consists of precision surface grinding, final polishing and post cleaning. Especially, the ultra precision grinding of wafer improves the flatness of wafer and the efficiency of production. Furthermore, it has been not only used in bare wafer grinding, but also applied to wafer back grinding and SOI wafer grinding. This paper focuses on the flatness of the ground wafer. Generally, the ground wafer has concave pronto because of the difference of wheel path density, grinding temperature and elastic deformation of the equipment. Wafer tilting is applied to avoid non-uniform material removal. Through the geometric analysis of wafer grinding process, the profile of the ground wafer is predicted by the development of profile simulator.

실리콘 웨이퍼 연삭의 형상 시뮬레이션 (Profile Simulation in Mono-crystalline Silicon Wafer Grinding)

  • 김상철;이상직;정해도;최헌종;이석우
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2003년도 춘계학술대회 논문집
    • /
    • pp.98-101
    • /
    • 2003
  • As the ultra precision grinding can be applied to wafering process by the refinement of the abrasive. the development of high stiffness equipment and grinding skill, the conventional wafering process which consists of lapping, etching, 1st, 2nd and 3rd polishing could be exchanged to the new process which consists of precision surface grinding, final polishing and post cleaning. Especially, the ultra precision grinding of wafer improves the flatness of wafer and the efficiency of production. Futhermore, it has been not only used in bare wafer grinding, but also applied to wafer back grinding and SOI wafer grinding. This paper focused on the flatness of the ground wafer. Generally, the ground wafer has concave profile because of the difference of wheel path density, grinding temperature and elastic deformation of the equiptment. Tilting mathod is applied to avoid such non-uniform material removes. So, in this paper, the geometric analysis on grinding process is carried out, and then, we can predict the profile of th ground wafer by using profile simulation.

  • PDF

금속결합제 연삭숫돌의 방전트루잉 성능 평가 (Truing Performance of Metal-Bonded Grinding Wheel by Electro-Discharge Truing Method)

  • 김태규;신건휘;정명원;곽태수
    • 한국기계가공학회지
    • /
    • 제15권3호
    • /
    • pp.79-85
    • /
    • 2016
  • Truing process is a very important process for recovering the shape of wheels worn by continuous grinding operation. In this study, the devices, controller, and spindle for electro-discharge truing were developed, and the electro-discharge truing method was applied to metal-bonded grinding wheels and compared with the conventional truing method. The shapes of the grinding wheels were measured by a surface profile measurement device. The protrusion of abrasives on the surface of the wheels was compared with the conventional truing method using an optic microscope measurement device. The experimental results showed that the performance of the electro-discharge truing method, in terms of the protrusion of abrasives on the surface of the wheels and the recovery of the shape of the worn wheels, was similar to that of the conventional truing method.

Minimization of Hydrodynamic Pressure Effect on the Ultraprecision Mirror Grinding

  • Lee, Sun-Kyu;Miyamoto, Yuji;Kuriyahawa, Tsunemoto;Syoji, Katsuo
    • International Journal of Precision Engineering and Manufacturing
    • /
    • 제6권1호
    • /
    • pp.59-64
    • /
    • 2005
  • This paper describes an investigation about the fluid delivering method that minimizes the generation of hydrodynamic pressure and improves the grinding accuracy. Traditionally, grinding fluid is delivered for the purpose of cooling, chip flushing and lubrication. Hence, a number of conventional investigations are focused on the delivering method to maximize fluid flux into the contact arc between the grinding wheel and the work piece. It is already known that hydrodynamic pressure generates due to this fluid flux, and that it affects the overall grinding resistance and machining accuracy. Especially in the ultra-precision mirror grinding process that requires extremely small amount of cut per pass, its influence on the machining accuracy becomes more significant. Therefore, in this paper, a new delivering method of grinding fluid is proposed with focus on minimizing the hydrodynamic pressure effect. Experimental data indicates that the proposed method is effective not only to minimize the hydrodynamic pressure but also to improve the machining accuracy.

WC-Co의 고품위 평면 연삭가공 (Surface grinding of WC-Co with high quality)

  • 허성중;강재훈;김원일
    • 한국정밀공학회지
    • /
    • 제11권5호
    • /
    • pp.42-55
    • /
    • 1994
  • Presently, abrasive processing is on eof several methods for cutting and grinding brittle materials, and high quality in dimensional accuracy and surface roughness are often required as a structural components, therefore most of them has to be ground. In manufacturing of tungsten-carbide components, grinding by diamond wheel is usually adopted in order to provide configurational and dimensional accuracy to the components. The present study proposes the experi- mental research of optimum condition to the high quality surface grinding of the WC-Co material using diamond abrasive wheel in order to minimize the damage on the ground surface and to pursue the precise dimension by conventional grinding machine. Brief investigation is carried out to decrease the dressing is constant, theoretical grinding effect such as machining precision is changed according to the speed of workpiece. Accordingly, normal and tangential grinding forces, which are Fn, Ft were analyzed for the machining processes of WC-Co material to obtain optimum grinding conditions, 3-point bending test is carried out to check machining damage on the ground surface layer, which is one of sintered brittle materials.

  • PDF

M/C에 사용되는 내면연삭 휠의 ELID 특성 (ELID characteristics of internal grinding wheel by using M/C)

  • 김성헌;방진영;지흥기;최환;이종찬;정선환;제태진
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1997년도 추계학술대회 논문집
    • /
    • pp.999-1002
    • /
    • 1997
  • In this study, in order to set ELID conditions in the internal grinding wheel, the characteristics with the variations of grit size, output voltage and peak current were examined by using conventional machining center(M/C) equipped with electrolytic in-process dressing(EL1D). The initial working voltage was lowered and the working current was high with increasing grit size. The insulating layer thickness increased, as the final voltage increased with the output voltage and peak current. The initial wear rate of the wheel machined with ELID were measured indirectly by using surface roughness tracer. The initial wear rate of the wheel with ELID increased along with high grit size. In case that the grit size with ELID was low, the output voltage and peak current had to be increased to increase the insulating layer thickness. In case of the high grit size, the output voltage and the peak current were established low, which made the insulating layer thickness decreased.

  • PDF

차륜-레일 상호작용력과 레일연마의 상관관계 분석 (Correlation Analysis between Dynamic Wheel-Rail Force and Rail Grinding)

  • 박준우;성덕룡;박용걸
    • 한국철도학회논문집
    • /
    • 제20권2호
    • /
    • pp.234-240
    • /
    • 2017
  • 레일표면 품질지수(QI: Quality Index)가 동적 궤도작용력에 미치는 영향을 알아보기 위하여 현장측정을 통해 레일연마횟수(Pass)에 따른 레일표면 품질지수의 변화를 분석하였다. 이론식에 근거하여 레일표면 품질지수에 영향을 미치는 매개변수인 열차속도에 따른 상관관계를 분석하였다. 레일연마횟수에 따른 레일표면 품질지수가 동적 궤도작용력에 미치는 영향을 분석한 결과, 레일표면 품질지수는 레일연마가 진행됨에 따라 감소하고 동적 궤도작용력 역시 일정 비율로 감소하는 것으로 분석되었으며, 고속주행 시 레일표면 품질지수에 따라 동적 궤도작용력은 크게 증가하는 것으로 분석되었다. 즉, 레일연마는 레일표면 품질지수를 일정비율로 감소시킬 수 있고, 궤도시스템 전반에 영향을 미치는 동적 궤도상호작용력을 저감 시킬 수 있는 것으로 분석되어 효율적인 레일표면관리를 위해서는 운행 노선의 열차속도를 감안한 레일표면 품질지수의 관리가 필요한 것으로 분석되었다.

파인세라믹의 연삭가공특성 (Grinding Characteristic of Advanced Ceramics)

  • 정윤교;강재훈
    • 한국정밀공학회지
    • /
    • 제7권2호
    • /
    • pp.105-112
    • /
    • 1990
  • Advanced ceramics have some excellent properities as the material for the mechanical component. It is, however, very difficult to grind ceramics with high efficiency because of their high strength, hardness and brittleness. In this paper, some experiments are carried out to find the basic grinding characteristic of advanced ceramics. Representative advanced ceramics, such as AL/sub 2/ O/sub 3/, ZrO/sub 2/, SiC and Si/sub 3/N/sub 4/and ground with diamond wheels. Special attention is paid to comparison between the conventional and creep feed grinding. Results obtained in this study provide some useful informations to attain the high efficiency grinding of advanced ceramics.

  • PDF

실리콘 웨이퍼 단면 연삭기 구조물 특성평가 (Review for Features of Wafer In-feed Grinder Structure)

  • 하상백;최성주;안대균;김인수;최영휴
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2006년도 춘계학술대회 논문집
    • /
    • pp.555-556
    • /
    • 2006
  • In recent years, the higher flatness level in wafer shape has been strictly demanded with a high integration of the semiconductor devices. It has become difficult for a conventional wafer preparing process to satisfy those demands. In order to meet those demands, surface grinding with in-feed grinder is adopted. In an in-feed grinding method, a chuck table fur fixing a semiconductor wafrr rotates on its rotation axis with a slight tilt angle to the rotation axis of a cup shaped grinding wheel and the grinding wheel in rotation moves down to grind the wafer. So, stability of the grinder structure is very important to aquire a wafer of good quality. This paper describes the features of the in-feed grinder and some FEM analysis results of the grinder structure.

  • PDF