• Title/Summary/Keyword: Conventional cutting

Search Result 431, Processing Time 0.029 seconds

A Study about Dynamic Behavior of the Face Milling Cutter to Minimize Resultant Cutting Force (최소 절삭력형 정면밀링 커터의 동적거동에 관한 연구)

  • Kim, J.H.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.13 no.4
    • /
    • pp.87-96
    • /
    • 1996
  • On face milling operation a newly optimal tool, which can minimize the resultant cutting forces resulted from the cutting force model, was designed and manufactrued. Cutting experiments using the new and conventional tools were carried out and the cutting forces resulted from those tools were analyzed in time and frequency domains. The performance of the optimized cutter was tested through the dynamic cutting forces resulted form the newly designed tool are much reduced in comparision with those from the conventional tool. By reducing the dynamic cutting force fluctuations, machine tool vibrations can be reduced, and stable cutting operation can be carried out.

  • PDF

Cutting Force Control of Turning Process Using Fuzzy Theory (퍼지이론을 이용한 선삭의 절삭력제어)

  • 노상현;정선환;김교형
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.1
    • /
    • pp.113-120
    • /
    • 1994
  • The dynamic characteristics of turning processes are complex, non-linear and time-varying. Consequently, the conventional techniques based on crisp mathematical model may not guarantee cutting force regulation. This paper presents a fuzzy controller which can regulate cutting force in turning process under varying cutting conditions. The fuzzy control rules are extablished from operator experience and expert knowledge about the process dynamics. Regulation which increases productivity and tool life is achieved by adjusting feedrate according to the variation of cutting conditions. The performance of the proposed controller is evaluated by cutting experiments in the converted conventional lathe. The results of experiments show that the proposed fuzzy controller has a good cutting force regulation capability in spite of the variation of cutting conditions.

A study on the vibration cutting of high-hardness mold steel (고경도 금형강의 진동 가공에 대한 연구)

  • Kim, Jong-Su
    • Design & Manufacturing
    • /
    • v.16 no.3
    • /
    • pp.39-43
    • /
    • 2022
  • In this study, we designed an vibration cutting tool that can achieve improvements such as low cutting force, interrupted chip evacuation and better surface quality of cutting performance to obtain high-quality surface roughness and improvement of tool wear, which is an issue in the machining of high-hardness mold steel. Among the resonance frequency modes of the vibration cutting tool, the bending mode was used to maximize the driving amplitude of the vibration tool tip, and the resonance frequency was confirmed through the finite element method. After measuring the actual resonant frequency of the designed tool using an optical fiber sensor, the cutting force and machining surface of vibration cutting and conventional cutting were compared and analyzed in the turning process of high hardness mold steel (STAVAX). As a result of the experiment, the cutting force was reduced by about 20 % compared to the conventional cutting process, and the surface roughness was also improved by about 60 %. This study suggested that the tool wear and surface quality of high-hardness steel can be improved through the vibration cutting method in the machining of high hardness mold steel.

The Minimizing of Cutting Depth using Vibration Cutting (진동절삭법을 이용한 절삭깊이의 최소화)

  • 손성민;안중환
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.11
    • /
    • pp.38-45
    • /
    • 2004
  • This paper discusses the minimum cutting thickness with a continuous chip in sub-micrometer order precision diamond cutting. An ultra precision cutting model is proposed, in which the tool edge radius and the friction coefficient are the principal factors determining the minimum cutting thickness. The experimental results verify the proposed model and provide various supporting evidence. In order to reduce the minimum cutting thickness a vibration cutting method is applied, and the effects are investigated through a series of experiments under the same conditions as conventional cutting method.

A study on the ultrasonic vibration cutting properties of fine ceramics (파인 세라믹스의 초음파 진동절삭에 관한 연구)

  • Kang, Jong-Pyo;Song, Ji-Bok
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.10 no.1
    • /
    • pp.126-133
    • /
    • 1993
  • Conventional cutting(CC) and Ultrasonic Vibration Cutting(UVC) of 20[KHz] are practised with standard lathe for fine ceramics(A1$_{2}$O$_{3}$. UVC is suggested to good cutting method for difficult-to-machine-materials and it is known to excellent cutting method to super precision cutting and elevation of productibility for general, nonferrous matals. In this research, main results to be obtained are as follows: 1. From the CC and UVC results by general lathe with sintering diamond tool, the surface roughness and roundness are improved in UVC. Also tool life is longer in UVC than CC. From the observation of machined surface, it is found that brittle fracutural material remove occured in fine ceramics cutting. 2. It is verified that the thrust force is the biggest in fine ceramics cutting, principal force is the next, and feed rate force the third and it is appear a little, on the other hand the principal force is the biggest in metal cutting, feed rate frece is the second, and thrust force is the next.

  • PDF

A Study on Damaged Layer Characteristics according to Cutting Speed in End-milling (엔드밀 가공시 가공속도에 따른 가공변질층 특성 연구)

  • 황인옥;이종환;김전하;강명창;김정석;이득우
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.778-781
    • /
    • 2004
  • As the technique of high-speed end-milling is widely adopted to in machining field. The investigation for microscopic precision of workpiece is necessary for machinability evolution. In this study, cutting force, cutting temperature and microhardness were investigated to evaluate damaged layer in conventional machining and high-speed machining. Damaged layer was measured using optical microscope. The thickness of damaged layer depends on cutting process parameters, specially feed per tooth and radial depth. It is obtained that the characteristics of damaged layer is high-speed machining better than conventional machining.

  • PDF

A Study on Five-Axis Roughing of Impeller with Ruled Surface (룰드 곡면으로 된 임펠러의 5축 황삭 가공에 관한 연구)

  • Jang, Dong-Kyu;Lim, Ki-Nam;Yang, Gyun-Eui
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.24 no.7 s.196
    • /
    • pp.60-68
    • /
    • 2007
  • This paper presents an efficient 5-axis roughing method for centrifugal impeller. The efficient roughing is minimization of cutting time through minimizing tool tilting and rotating motions. To minimized cutting time, machining area is divided into sub-cutting regions using control points on hub curves and shroud curves of blade used to design and analyze centrifugal impeller. For sub-cutting regions, diameters of cutting tools are determined as big as possible. Then, tool paths are generated with the tilting axis and rotating axis of 5-axis machine limited and fixed, which can give more efficient machining speed and machining stability than the conventional methods. Experimental results show that the proposed method is more efficient than the conventional methods to mill with the only one cutting tool without dividing area and the previous methods to mill with simultaneous 5-axis processing with dividing area.

Semidry-cutting Characteristics according to Workpiece Materials (공작물 재질에 따른 세미드라이 절삭가공 특성)

  • Lee, Jong-Hang;Park, Cheol-Woo;Lee, Seok-Woo;Choi, Hon-Zong
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.968-973
    • /
    • 2003
  • As environmental restrictions have continuously become more strict, it has emphasized development of environment-friendly technologies. In cutting technology, it has been well recognized that cutting fluids might have undesirable effects on worker's health and working environment and, hence, recently there have been numerous attempts to minimize harmful effects of cutting fluids on environments. To minimize the use of cutting fluids in machining, conventional cutting fluids have been replaced with the technologies of pressurized cold air and minimum quantity lubrication(MQL). Compared with milling, turning is a continuous cutting process, where tools are continuously heated up and lack of lubricity could lead to tool wear and deteriorated surface roughness. In this study, it has been investigated how tool wear and surface roughness could be affected by cutting conditions, supply and cooling methods. The experimental results show that MQL technology is able to minimize harmful effects of conventional cutting fluids.

  • PDF

Cutting Performance of Submicron Cermet Tools and Their Mechanical Properties (초미립 서멧 절삭공구의 절삭성능과 기계적 특성)

  • Ahn, Dong-Gil
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.4
    • /
    • pp.182-189
    • /
    • 2001
  • TiCN based submicron cermet and similar ISO grad of the conventional cermets with TiCN of different particle size were produced by PM process, and their microstructure, mechanical properties and cutting performance were compared. The microstructure of submicron cermet was more homogeneous and showed much finer microstructure, resulting in better hardness and fracture toughness. The submicron cermet tools achieved excellent cutting performance such as wear resistance and toughness in comparison with two grades of the conventional cermets in millimg test. The relationship between microstrucure, mechanical properties and cutting performance of these cermet tools was discussed. The submicron cermet tools revealed for their potential to wide application range and interrupt cutting because of their superior wear resistance and toughness combinations.

  • PDF

Evaluation of Ultrasonic Vibration Cutting while Machining Inconel 718

  • Nath, Chandra;Rahman, Mustafizur
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.9 no.2
    • /
    • pp.63-68
    • /
    • 2008
  • Hard and brittle materials, such as Ni- and Ti-based alloys, glass, and ceramics, are very useful in aerospace, marine, electronics, and high-temperature applications because of their extremely versatile mechanical and chemical properties. One Ni-based alloy, Inconel 718, is a precipitation-hardenable material designed with exceptionally high yield strength, ultimate tensile strength, elastic modulus, and corrosion resistance with outstanding weldability and excellent creep-rupture properties at moderately high temperatures. However, conventional machining of this alloy presents a challenge to industry. Ultrasonic vibration cutting (UVC) has recently been used to cut this difficult-to-machine material and obtain a high quality surface finish. This paper describes an experimental study of the UVC parameters for Inconel 718, including the cutting force components, tool wear, chip formation, and surface roughness over a range of cutting conditions. A comparison was also made between conventional turning (CT) and UVC using scanning electron microscopy observations of tool wear. The tool wear measured during UVC at low cutting speeds was lower than CT. UVC resulted in better surface finishes compared to CT under the same cutting conditions. Therefore, UVC performed better than CT at low cutting speeds for all measures compared.