• Title/Summary/Keyword: Conventional activated sludge

Search Result 106, Processing Time 0.024 seconds

A study on the Simultaneous Removal of Nitrogen and Phosphorus on Reactor Configuration in Intermittently Aerated Activated Sludge System (간헐폭기 활성슬러지 시스템에서 반응조 형태에 따른 질소 및 인의 동시제거 특성에 관한 연구)

  • Lee, Won-Ho;Seo, In-Seok;Kim, Kwang-Yul
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.12 no.2
    • /
    • pp.106-114
    • /
    • 1998
  • In this research, single-, two- and four-stage intermittently aerated activated sludge system were investigated for simultaneous removal of nitrogen and phosphorus with swine wastewater. For the comparison of removal efficiency, conventional activated sludge system was operated. Operational conditions of intermittently aerated activated sludge system were SRT 20day, HRT 24hr and aeration/nonaeration time 1hr/1hr, respectively. Nitrogen and phosphorus removal efficiency in Intermittently aerated activated sludge system was upgraded compare with conventional activated sludge system. In single-stage intermittently aerated activated sludge system, release-uptake of $PO_4^{3-}-P$ was observed very well but, phosphosrus removal in effluent was not effective. In single-stage intermittently aerated activated sludge system, release-uptake of $PO_4^{3-}-P$ in first reactor, was observed very well but, in following reactor, $PO_4^{3-}-P$ concentation showed almost no change. T-N removal efficiency in conventional activated sludge system, single-, two-, and four-stage intermittently aerated activated sludge system were 48, 87, 90.9 and 95.5%, respectively, and phosphorus removal efficiency were 48, 75, 97 and 95%, respectively. Intermittently aerated activated sludge system as a alternative processes of conventional system leads to meet satisfactory effleunt with only on/off aeration regulation and save energy for aeration.

  • PDF

A Study on the improvement of treatment efficiency in a conventional sewage treatment plant (기존 하수처리장에서의 처리 효율개선에 관한 연구)

  • 안철우;박진식;문추연
    • Journal of environmental and Sanitary engineering
    • /
    • v.15 no.3
    • /
    • pp.50-56
    • /
    • 2000
  • In this study, sewage were treated with operating Two-step Aeration System and conventional activated sludge process together in a condition. At the same HRT 8hr of Two-step Aeration System and Activated Sludge Process, BOD treatment efficiency of 1st sedimentation basin effluent 36.9% by Two-step Aeration system was 12.3% higher than 24.65 by Activated Sludge Process and the COD treatment efficiency 39.8% by two-step Aeration System was 11.6.3% higher than 28.2% by Activated Sludge Process. BOD and COD treatment efficiencies of 2nd sedimentation basin effluent were 88.1% and 85.6% Two-step Aeration System and were 83.8% and 82.3% Activated Sludge Process. In the first treatment, as BOD was relatively removed a lot, F/M ratio 0.17, $0.21{\cdot}BOD/kg{\cdot}MLSS.d$ was maintained by Activated Sludge Process. Therefore it was proved that organic matter treatment efficiency by Two-step Aeration System os Higher than by Activated Sludge Process in a aeration time 8hr. $NH_4^{+}-N$ treatment efficiencies were 55.5% by Two-step Aeration System and 39.75 by Activated sludge Process. $NO_3^{-}-N$ concentration in 2nd. sedimentation basin effluent were 3.33% by Two-step Aeration System and 2.36% by Activated Sludge Process. From this result, Two-step Aeration System was proved more advantageous treatment process for nitrification than Activated Sludge Process. The fluctuation range of BOD, COD and SS concentration in 2nd sedimentation basin effluent $16~33mg/{\ell}$, $15~23mg/{\ell}$ and $14~22mg/{\ell}$ by Two-step Aeration System was smaller than $16~57mg/{\ell}$, $15~25mg/{\ell}$ by Activated sludge Process. Overall the fluctuation range in 2nd sediment basin effluent by was smaller than by Activated Sludge Process. As a result, it is possible for this Two-step Aeration with no facility investment and a little of operation condition change in a conventional sewage treatment plant to get stability and nitrification of treatment water quality.

  • PDF

Influence of Anoxic Selectors on Heavy Metal Removal by Activated Sludge

  • Niec, Jay H.;Cha, Daniel K.
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.5 no.6
    • /
    • pp.431-435
    • /
    • 2000
  • The goal of this research is to compare the metal binding characteristics of an anoxic selector activated sludge system and a conventional activated sludge system. Metal biosorption by biomass harvested from experimental systems was determined by a series of batch experiments. Heavy metals studied in this research were zinc, cadmium, and nickel. The sorption isotherm showed that the selector sludge had significantly higher sorption capacity than did the control sludge. Metal biosorption behavior closely followed a Freundlich isotherm model for equilibrium concentrations. ECP contents of biomass estimated by alkali extraction technique showed that ECP levels in the selector sludge significantly higher than that in the sludge harvested from the conventional system, indicating that the higher metal sorption capacity of selector sludge may be due to the selection of the ECP-producing bacteria (i.e., Zoogloea sp.) by the selector system.

  • PDF

Enhanced and Balanced Microalgal Wastewater Treatment (COD, N, and P) by Interval Inoculation of Activated Sludge

  • Lee, Sang-Ah;Lee, Nakyeong;Oh, Hee-Mock;Ahn, Chi-Yong
    • Journal of Microbiology and Biotechnology
    • /
    • v.29 no.9
    • /
    • pp.1434-1443
    • /
    • 2019
  • Although chemical oxygen demand (COD) is an important issue for wastewater treatment, COD reduction with microalgae has been less studied compared to nitrogen or phosphorus removal. COD removal is not efficient in conventional wastewater treatment using microalgae, because the algae release organic compounds, thereby finally increasing the COD level. This study focused on enhancing COD removal and meeting the effluent standard for discharge by optimizing sludge inoculation timing, which was an important factor in forming a desirable algae/bacteria consortium for more efficient COD removal and higher biomass productivity. Activated sludge has been added to reduce COD in many studies, but its inoculation was done at the start of cultivation. However, when the sludge was added after 3 days of cultivation, at which point the COD concentration started to increase again, the algal growth and biomass productivity were higher than those of the initial sludge inoculation and control (without sludge). Algal and bacterial cell numbers measured by qPCR were also higher with sludge inoculation at 3 days later. In a semi-continuous cultivation system, a hydraulic retention time of 5 days with sludge inoculation resulted in the highest biomass productivity and N/P removal. This study achieved a further improved COD removal than the conventional microalgal wastewater treatment, by introducing bacteria in activated sludge at optimized timing.

침지형 분리막을 사용한 오수처리

  • 최광호
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 1998.06a
    • /
    • pp.113-133
    • /
    • 1998
  • In activated sludge process, sludge settling condition is affected by organic loading rate or operation condition, and if settling condition is getting worse, it is common that overall process fails due to wash-out of biomass causing low concentration in the aeration tank. Also activated sludge process has such several problems as requiring large area, consuming a lot of power and producing large volume of sludge. Increased public concern over health and the environment combined with a strong desire to reduce capital, operating and maintenance costs, have created a need for innovative technologies for building new high quality effluents which vail meet 21st century crkeria. MBR(Membrane Bioreactor) process consists of a biological reactor and ultrafiltration(UF) membrane system that replaces the conventional clarifier of an activated sludge process. The main operating advantages of this system are that the quality of the effluent is independent of the settleability of the mixed liquor and that the effluent is free of suspended solids in any operating condition. It is possible to eliminate clarifier and to reduce the volume of aeration tank because it can afford to accumulate high biomass concentration in the bioreactor(20, 000~30, 000mg/L), which would not be possible in a conventional activated sludge process. Therefore, this process reduces overall treatment plant area. In addition to those advantages, Longer SRT condition enables higher sludge digestion in MBR process so the sludge volume produced is 50 to 70% lower than that of conventional activated sludge process There are two kinds of MBR process according to the allocations of membrane. One is cross flow type MBR of which module is located outside of the bioreactor and mixed liquor is driven into the membrane module. The other is submerged type MBR process of which module is submerged in the bioreactor and mixed liquor is generally sucked from the lumen side. addition to that the cake layer is often removed by the uplifting flow of bubbling air. A submerged MBR process is superior to a crossflow MBR in regard to the power consumption because suction pressure of a submerged MBR is generally lower than that of a crossflow MBR which has recirculation pump. A submerged MBR, therefore, has the potential to be applied to small wastewater treatment plants that need low cost treatment systems.

  • PDF

Evaluating Two Types of Rectangular Secondary Clarifier Performance at Biological Nutrient Removal Facilities (생물학적 고도처리공법에 적용된 두 형태의 장방형 이차침전지 성능 파악)

  • Lee, Byonghi
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.27 no.5
    • /
    • pp.561-570
    • /
    • 2013
  • There are two types of rectangular secondary clarifier at biological nutrient removal (BNR) facility to settle MLSS; conventional activated sludge secondary clarifier and Gould Type I clarifier. In this study, the performances of two types at respective biological nutrient removal facility are compared using weekly operational data. Surface Overflow Rate (SOR), Surface Loading Rate (SLR), Sludge Volume Index (SVI), secondary effluent SS concentration are studied. It has found that Gould Type I has 3.5 times less average secondary effluent SS concentration that is 2.4 mg/L than that of conventional activated sludge secondary clarifier. Both SOR and SLR have shown little effect on secondary effluent SS concentrations at Gould Type I clarifier in contrary that SOR affects the secondary effluent SS concentrations at conventional activated sludge rectangular secondary clarifier. From this study, it is recommended that Gould Type I must be considered for secondary clarifier when BNR plant is designed.

Soybean Wastewater Treatment by Activated Sludge Process (고농도 대두가공폐수의 처리를 위한 개선 활성슬러지법)

  • Cho, Kwon-Ik;Lee, Jeoung-Su;Lee, Tae-Kyoo;Kim, Jong-Hwa
    • Applied Biological Chemistry
    • /
    • v.45 no.1
    • /
    • pp.25-29
    • /
    • 2002
  • The kernel of wastewater treatment by activated sludge is elimination of organic substances and maintenance of well-flocculated sludge sedimentation. By the conventional activated sludge treatment, the optimum F/M ratio of soybean wastewater treatment was 0.24 (kg-BOD/kg-MLVSS day) and sludge bulking was generated at 0.48 (kg-BOD/kg-MLVSS day). To improve the treatment capacity and operation quality in higher loading of soybean wastewater, influent pH was constantly controlled by 9.0 using NaOH as a coagulant agent. In this process, higher loading up to 2.88 (kg-BOD/kg-MLVSS day) was possible and SVI was maintained under 150 without bulking. This was equivalent to 7.2 times higher than maximum permissible load of the conventional activated sludge process.

Evaluation of Excess Sludge Reduction in the OSA Process using Kinetic Parameter and Mass Balance (동역학계수 및 물질수지를 이용한 OSA공정의 잉여슬러지 감량능 평가)

  • Nam, Duck-Hyun;Jang, Hyung-Suk;Ha, Kuem-Ryul;Kim, Joon-Kyu;Ju, Jae-Young;Jung, In-Ho;Park, Chul-Hwi
    • Journal of Korean Society on Water Environment
    • /
    • v.25 no.4
    • /
    • pp.530-538
    • /
    • 2009
  • The Oxic-Settling-Anaerobic (OSA) treatment process, a modified Conventional Activated Sludge (CAS) process, was developed for the purpose of sludge reduction. The insertion of a sludge holding tank into a sludge return line, an anaerobic reactor, forming an OSA process, may provide a cost-effective way of reducing excess sludge production during a process. The OSA process was evaluated for its sludge reduction ability by kinetic parameter and mass balance, with an observed excess sludge reduction of 63.5%, as $P_{X.VSS}$, compared with the conventional activated sludge process.

Sludge Reduction in Activated Sludge Process by solubilizing Return Sludge using Electric Field/Ultrasonification (전기장 및 초음파에 의한 반송슬러지의 가용화에 따른 활성슬러지에서의 슬러지 감량화)

  • Yoon, Soon-Uk;Ahn, Chang-Min;Kim, Chang-Gyun
    • Journal of Korean Society on Water Environment
    • /
    • v.29 no.3
    • /
    • pp.329-336
    • /
    • 2013
  • This study was conducted to reduce excess sludge generation by recycling of return sludge to the aeration tank after solubilization by electric field charger and ultrasonifier. The return sludge was purposely broken-up to the ratio of $SCOD_{Cr}/TCOD_{Cr}$ at 0.1, 0.2, and 0.3, which was tested along with control (i.e., untreated). Solubilized sludge was subsequently treated in a bench-scaled conventional activated sludge reactor. According to varying $SCOD_{Cr}/TCOD_{Cr}$ ratios, TSS in the reactor was correspondingly increased from 129 to 219 mg/L and $TCOD_{Cr}$ was also from 257 to 335 mg/L. However, TSS in the effluent was nevertheless kept lower at below 30 mg/L and $TCOD_{Cr}$ was also unvaryingly below 40 mg/L. For $SCOD_{Cr}/TCOD_{Cr}$ = 0.3, the amount of excess sludge produced was at the highest decreased up to as high as 78%.

A Study on the Field Application of Intermittently Aerated Activated Sludge Process for Water Reuse System (간헐포기 활성슬러지 중수처리공정의 현장적용 연구)

  • Seo, In-Seok;Kim, Byung-Goon;Park, Seung-Kook;Kwon, Sun-Woong
    • Journal of Korean Society on Water Environment
    • /
    • v.16 no.4
    • /
    • pp.513-521
    • /
    • 2000
  • Intermittently aerated activated sludge process was applied as a water reuse process of $70m^3/day$ for the upgrade of organic, nitrogen and phosphorus removal efficiency and clarifier performance. After application of the intermittently aeration, removal efficiency of BOD, SS, T-N and T-P were achieved 95%, 90%, 80% and 60%, respectively. Removal efficiencies in intermittently aerated process were considerably increased. comparing to those of continuously aerated activated sludge process. Also sludge rising problem in clarifier was improved. Average concentration of supplied reusing water were BOD 5 mg/L, turbidity 4 NTU and after chlorination, residual chlorine 0.4 mg/L, coliform 0 MPN/100mL. Intermittently aerated activated sludge process could be one of the best alternative process for the retrofit of conventional activated sludge process for the removal of nutrient in water reuse system.

  • PDF