• Title/Summary/Keyword: Convective Method

Search Result 358, Processing Time 0.023 seconds

Analysis of Observational Cases Measured by MRR and PARSIVEL Disdrometer for Understanding the Physical Characteristics of Precipitation (강수의 물리적 특성 이해를 위한 MRR 및 PASIVEL 우적계의 관측사례 분석)

  • Cha, Joo-Wan;Chang, Ki-Ho;Oh, Sung-Nam;Choi, Young-Jean;Jeong, Jin-Yim;Jung, Jae-Won;Yang, Ha-Young;Bae, Jin-Young;Kang, Sun-Young
    • Atmosphere
    • /
    • v.20 no.1
    • /
    • pp.37-47
    • /
    • 2010
  • The methods measuring the precipitation drop size distribution(hereafter referred to as DSD) at Cloud Physics Observation System (CPOS) in Daegwallyeong are to use PARSIVEL (PARticle SIze and VELocity) disdrometer (hereafter referred to as PARSIVEL) and Micro Rain Radar (hereafter referred to as MRR). First of all, PARSIVEL and MRR give good correlation coefficients between their rain rates and those of rain gage: $R^2=0.93$ and 0.91, respectively. For the DSD, the rain rates are classified in 3 categories (Category 1: rr (Rain Rate) ${\leq}0.5\;mm\;h^{-1}$, Category 2: $0.5\;mm\;h^-1$ < rr < $4.0\;mm\;h^{-1}$, Category 3: rr ${\geq}4\;mm\;h^{-1}$). The shapes of PARSIVEL and MRR DSD are relatively most similar in category 2. In addition, we retrieve the vertical rain rate and liquid water content from MRR under melting layer, calculated by Cha et al's method, in Daegwallyeong ($37^{\circ}41{\prime}N$, $128^{\circ}45^{\prime}E$, 843 m ASL, mountain area) and Haenam ($34^{\circ}33^{\prime}N$, $126^{\circ}34^{\prime}E$, 4.6 m ASL, coast area). The vertical variations of rain rate and liquid water content in Daegwallyeong are smaller than those in Haenam. We think that this different vertical rain rate characteristic for both sites is due to the vertical different cloud type (convective and stratiform cloud seem dominant at Haenam and Daegwallyeong, respectively). This suggests that the statistical precipitation DSD model, for the application of weather radar and numerical simulation of precipitation processes, be considered differently for the region, which will be performed in near future.

Numerical analysis of solar heat gain on slim-type double-skin window systems - Heat transfer phenomena with opening of windows and vent slot in summer condition - (전산유체 해석을 통한 슬림형 이중외피 창호의 태양열 취득량 분석 - 높은 태양고도 및 하절기 냉방조건에서의 자연환기구 적용 및 창문 조절 방식별 비교 -)

  • Park, Ji-Ho;Oh, Eun-Joo;Cho, Dong-Woo;Cho, Kyung-Joo;Yu, Jung-Yeon
    • KIEAE Journal
    • /
    • v.17 no.1
    • /
    • pp.69-75
    • /
    • 2017
  • Purpose: Heat transfer analysis of recently developed 'slim type double-skin system window' were presented. This window system is designed for curtain wall type façade that main energy loss factor of recent elegant buildings. And the double skin system is the dual window system integrated with inner shading component, enclosed gap space made by two windows when both windows were closed and shading component effectively reflect and terminate solar radiation from outdoor. Usually double-skin system requires much more space than normal window systems but this development has limited by 270mm, facilitated for curtain wall façade buildings. In this study, we estimated thermophysical phenomena of our double-skin curtain wall system window with solar load conditions at the summer season. Method: A fully 3-Dimentional analysis adopted for flow and convective and radiative heat transfer. The commercial CFD package were used to model the surface to surface radiation for opaque solid region of windows' frame, transparent glass, fluid region at inside of double-skin and indoor/outdoor environments. Result: Steep angle of solar incident occur at solar summer conditions. And this steep solar ray cause direct heat absorption from outside of frame surface rather than transmitted through the glass. Moreover, reflection effect of shading unit inside at the double-skin window system was nearly disappeared because of solar incident angle. With this circumstances, double-skin window system effectively cuts the heat transfer from outdoor to indoor due to separation of air space between outdoor and indoor with inner space of double-skin window system.

A Comprehensive Groundwater Modeling using Multicomponent Multiphase Theory: 1. Development of a Multidimensional Finite Element Model (다중 다상이론을 이용한 통합적 지하수 모델링: 1. 다차원 유한요소 모형의 개발)

  • Joon Hyun Kim
    • Journal of Korea Soil Environment Society
    • /
    • v.1 no.1
    • /
    • pp.89-102
    • /
    • 1996
  • An integrated model is presented to describe underground flow and mass transport, using a multicomponent multiphase approach. The comprehensive governing equation is derived considering mass and force balances of chemical species over four phases(water, oil, air, and soil) in a schematic elementary volume. Compact and systemati notations of relevant variables and equations are introduced to facilitate the inclusion of complex migration and transformation processes, and variable spatial dimensions. The resulting nonlinear system is solved by a multidimensional finite element code. The developed code with dynamic array allocation, is sufficiently flexible to work across a wide spectrum of computers, including an IBM ES 9000/900 vector facility, SP2 cluster machine, Unix workstations and PCs, for one-, two and three-dimensional problems. To reduce the computation time and storage requirements, the system equations are decoupled and solved using a banded global matrix solver, with the vector and parallel processing on the IBM 9000. To avoide the numerical oscillations of the nonlinear problems in the case of convective dominant transport, the techniques of upstream weighting, mass lumping, and elementary-wise parameter evaluation are applied. The instability and convergence criteria of the nonlinear problems are studied for the one-dimensional analogue of FEM and FDM. Modeling capacity is presented in the simulation of three dimensional composite multiphase TCE migration. Comprehesive simulation feature of the code is presented in a companion paper of this issue for the specific groundwater or flow and contamination problems.

  • PDF

Thermal Flow Analysis for Development of LED Fog Lamp for Vehicle (차량 LED 안개등 개발을 위한 열유동 해석)

  • Lee, Suk Young
    • Journal of Energy Engineering
    • /
    • v.28 no.4
    • /
    • pp.35-41
    • /
    • 2019
  • In order to overcome these disadvantages, the halogen light source, which was previously used as a vehicle fog light, has increased power consumption and a short lifetime, and thus, an automobile light source is gradually being replaced with an LED. However, when the vehicle LED fog light is turned on, there is a disadvantage in reducing the life of the fog lamp due to the high heat generated from the LED. The heat generated by the LED inside the fog lamp is mainly emitted by the heatsink, but most of the remaining heat is released to the outside through convection. When cooling efficiency decreases due to convection, thermal energy generates heat to lenses, reflectors, and bezels, which are the main parts of lamps, or generates high temperatures in LED, thereby shortening the life of LED fog lights. In this study, we tried to improve the heat dissipation performance by convection in addition to the heat dissipation method by heat sink, and to determine the installation location of vents that can discharge the internal air or intake the external air of LED fog lamp for vehicle. Thermal fluid analysis was performed to ensure that the optimal data were reflected in the design. The average velocity of air increased in the order of Case3 and Case2 compared to Case1, which is the existing prototype, and the increase rate of Case3 was relatively higher than that of other cases. This is because the vents installed above and below the fog lamps induce the convective phenomena generated according to the temperature difference, and the heat is efficiently discharged with the increase of the air speed.

Application of an Automated Time Domain Reflectometry to Solute Transport Study at Field Scale: Experimental Methodology and Calibration of TDR (시간영역 광전자파 분석기(Automatic TDR System)를 이용한 오염물질의 거동에 관한 연구: 실험방법 및 검정)

  • Kim, Dong-Ju
    • Economic and Environmental Geology
    • /
    • v.29 no.6
    • /
    • pp.699-712
    • /
    • 1996
  • Field scale experiments using an automated 144-channel TDR system were conducted which monitored the movement of solute through unsaturated loamy soils. The experiments were carried out on two different field plots of 0.54 ha to study the vertical movement of solute plume created by applying a square pulse of $CaCl_2$ as a tracer. The residence concentration was monitored at 24 locations on a transect and 5 depths per location by horizontally-positioning 50 cm long triple wire TDR probes to study the heterogeneity of solute travel times and the governing transport concept at field scale. This paper describes details of experimental methodology and calibration aspects of the TDR system. Three different calibration methods for estimation of solute concentration from TDR-measured bulk soil electrical conductivity were used for each field site. Data analysis of mean breakthrough curves (BTCs) and parameters estimated using the convection-dispersion model (CDE) and the convective-lognormal transfer function model (CLT) reveals that the automated TDR system is a viable technique to study the field scale solute transport providing a normal distribution of resident concentration in a high resolution of time series, and that calibration method does not significantly affect both the shape of BTC and the parameters related to the peak travel time. Among the calibration methods, the simple linear model (SLM), a modified version of Rhoades' model, appears to be promising in the calibration of horizontally-positioned TDR probes at field condition.

  • PDF

Pretreatment Characteristics of Potatoes by Soft Steam Treatment (저온스팀 열처리 방식에 따른 감자의 전처리 특성)

  • Cheigh, Chan-Ick
    • Korean Journal of Food Science and Technology
    • /
    • v.46 no.5
    • /
    • pp.660-664
    • /
    • 2014
  • This study aimed to investigate the effects of various soft steam treatments, namely, forced convection-boiler, forced convection-fan, and natural convection, on the pretreatment characteristics of potatoes. In this study, potatoes were exposed to various cooking conditions, including steaming method, treatment time (0-60 min), and temperature (60, 70, $80^{\circ}C$). Then, changes in temperature, cook value, ascorbic acid content, moisture content, and weight loss in the fresh and steam-treated samples were measured and evaluated. The results clearly showed that natural convective steaming was superior to other treatments in terms of heating characteristics, cook value (FC-b: $46.4{\pm}1.7$, FC-f: $21.8{\pm}1.1$, NC: $52.1{\pm}1.9min$ at $80^{\circ}C$), ascorbic acid content (FC-b: $36.5{\pm}2.7$, FC-f: $28.5{\pm}2.9$, NC: $48.2%{\pm}2.5%$ at $80^{\circ}C$), moisture retention (FCb: $74.6{\pm}0.8$, FC-f: $71.5{\pm}0.5$, NC: $77.6%{\pm}0.4%$ for 60 min at $80^{\circ}C$), and weight loss (FC-b: $13.9{\pm}0.8$, FC-f: $15.6{\pm}0.6$, NC: $10.6%{\pm}0.7%$ for 60 min at $80^{\circ}C$) for thermally processed potatoes.

Development and evaluation of a 2-dimensional land surface flood analysis model using uniform square grid (정형 사각 격자 기반의 2차원 지표면 침수해석 모형 개발 및 평가)

  • Choi, Yun-Seok;Kim, Joo-Hun;Choi, Cheon-Kyu;Kim, Kyung-Tak
    • Journal of Korea Water Resources Association
    • /
    • v.52 no.5
    • /
    • pp.361-372
    • /
    • 2019
  • The purpose of this study is to develop a two-dimensional land surface flood analysis model based on uniform square grid using the governing equations except for the convective acceleration term in the momentum equation. Finite volume method and implicit method were applied to spatial and temporal discretization. In order to reduce the execution time of the model, parallel computation techniques using CPU were applied. To verify the developed model, the model was compared with the analytical solution and the behavior of the model was evaluated through numerical experiments in the virtual domain. In addition, inundation analyzes were performed at different spatial resolutions for the domestic Janghowon area and the Sebou river area in Morocco, and the results were compared with the analysis results using the CAESER-LISFLOOD (CLF) model. In model verification, simulation results were well matched with the analytical solution, and the flow analyses in the virtual domain were also evaluated to be reasonable. The results of inundation simulations in the Janghowon and the Sebou river area by this study and CLF model were similar with each other and for Janghowon area, the simulation result was also similar to the flooding area of flood hazard map. The different parts in the simulation results of this study and the CLF model were compared and evaluated for each case. The results of this study suggest that the model proposed in this study can simulate the flooding well in the floodplain. However, in case of flood analysis using the model presented in this study, the characteristics and limitations of the model by domain composition method, governing equation and numerical method should be fully considered.

Quantitative Rainfall Estimation for S-band Dual Polarization Radar using Distributed Specific Differential Phase (분포형 비차등위상차를 이용한 S-밴드 이중편파레이더의 정량적 강우 추정)

  • Lee, Keon-Haeng;Lim, Sanghun;Jang, Bong-Joo;Lee, Dong-Ryul
    • Journal of Korea Water Resources Association
    • /
    • v.48 no.1
    • /
    • pp.57-67
    • /
    • 2015
  • One of main benefits of a dual polarization radar is improvement of quantitative rainfall estimation. In this paper, performance of two representative rainfall estimation methods for a dual polarization radar, JPOLE and CSU algorithms, have been compared by using data from a MOLIT S-band dual polarization radar. In addition, this paper presents evaluation of specific differential phase ($K_{dp}$) retrieval algorithm proposed by Lim et al. (2013). Current $K_{dp}$ retrieval methods are based on range filtering technique or regression analysis. However, these methods can result in underestimating peak $K_{dp}$ or negative values in convective regions, and fluctuated $K_{dp}$ in low rain rate regions. To resolve these problems, this study applied the $K_{dp}$ distribution method suggested by Lim et al. (2013) and evaluated by adopting new $K_{dp}$ to JPOLE and CSU algorithms. Data were obtained from the Mt. Biseul radar of MOLIT for two rainfall events in 2012. Results of evaluation showed improvement of the peak $K_{dp}$ and did not show fluctuation and negative $K_{dp}$ values. Also, in heavy rain (daily rainfall > 80 mm), accumulated daily rainfall using new $K_{dp}$ was closer to AWS observation data than that using legacy $K_{dp}$, but in light rain(daily rainfall < 80mm), improvement was insignificant, because $K_{dp}$ is used mostly in case of heavy rain rate of quantitative rainfall estimation algorithm.