• Title/Summary/Keyword: Convective Heat Transfer Coefficient

검색결과 216건 처리시간 0.022초

적외선 측정 기법을 이용한 초음속 유동내 열전달 측정 (Heat Transfer Measurement in a Supersonic Flowfield by an Infra-red Thermography)

  • 유만선;이종주;송지운;조형희
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2006년도 제27회 추계학술대회논문집
    • /
    • pp.359-362
    • /
    • 2006
  • 초음속 유동내 노출된 표면에서의 열전달 특성 파악을 위하여 적외선 측정 방법이 적용되었다. 등열유속 조건을 만족하는 표면 온도를 적외선 카메라로 촬영하여 이로부터 대류 열전달 계수를 계산하였으며, 실린더가 설치된 표면 근방에서 증가된 열전달 계수 분포를 도출해 낼 수 있었다.

  • PDF

수직관 내 초임계상태 물의 천이상태 대류열전달현상에 관한 연구 (A Study on the Transient Convective Heat Transfer for Supercritical Water in a Vertical Tube)

  • 이상호
    • 설비공학논문집
    • /
    • 제17권12호
    • /
    • pp.1095-1105
    • /
    • 2005
  • Numerical analysis has been carried out to investigate transient turbulent convective heat transfer in a vertical tube for supercritical water near the thermodynamic critical point. Heat transfer and fluid flow in the tube we strongly coupled due to the large variations of thermodynamic and transport properties such as density, specific heat, and turbulent viscosity. As pressure in the tube approaches to the critical pressure, the properties variation with time becomes larger. Heat transfer coefficient rapidly decreases along the tube near the pseudocritical temperature at the tube wall for $P_R<1.2$. Stanton number variation with time is largely reduced in the region of gas-like phase in comparison with Nusselt number. Turbulent viscosity ratio close to the wall increases near the pseudocritical temperature and it gradually decreases with time.

자유흐름온도와 대류열전달계수를 동시에 측정할 수 있는 방법에 대한 실험적 연구 (An Experimental Study on a Simultaneous Determination of Reference Free-Stream Temperature and Convective Heat Transfer Coefficients)

  • 송기범;정기호;성영식;김귀순
    • 대한기계학회논문집B
    • /
    • 제26권10호
    • /
    • pp.1465-1471
    • /
    • 2002
  • This paper deals with the development of a new method that can obtain the heat transfer coefficient and the reference free stream temperature simultaneously. The method is experimentally verified through comparison with results in convective heat transfer experiments of a circular impinging jet using two narrow-band TLCs. The general method described in this paper is highly recommended to many heat transfer models with the unknown or ambiguous free stream temperature.

Prediction of Forced Convective Boiling Heat Transfer Coefficient of Pure Refrigerants and Binary Refrigerant Mixtures Inside a Horizontal Tube

  • Kim, Min-Soo;Hong, Eul-Cheong;Shin, Jee-Young;Kyungdoug Min;Ro, Sung-Tack
    • Journal of Mechanical Science and Technology
    • /
    • 제17권6호
    • /
    • pp.935-944
    • /
    • 2003
  • Forced convective boiling heat transfer coefficients were predicted for an annular flow inside a horizontal tube for pure refrigerants and nonazeotropic binary refrigerant mixtures. The heat transfer coefficients were calculated based on the turbulent temperature profile in liquid film and vapor core considering the composition difference in vapor and liquid phases, and the nonlinearity in mixing rules for the calculation of mixture properties. The heat transfer coefficients of pure refrigerants were estimated within a standard deviation of 14% compared with available experimental data. For nonazeotropic binary refrigerant mixtures, prediction of the heat transfer coefficients was made with a standard deviation of 18%. The heat transfer coefficients of refrigerant mixtures were lower than linearly interpolated values calculated from the heat transfer coefficients of pure refrigerants. This degradation was represented by several factors such as the difference between the liquid and the overall compositions, the conductivity ratio and the viscosity ratio of both components in refrigerant mixtures. The temperature change due to the concentration gradient was a major factor for the heat transfer degradation and the mass flux itself at the interface had a minor effect.

A Convective Heat Transfer Correlation for Turbulent Gas-Liquid Two-Phase Flow in Vertical Pipes

  • Kim, Dong-Woo
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • 제9권4호
    • /
    • pp.27-36
    • /
    • 2001
  • A new two-phase non-boiling convective heat transfer correlation for turbulent flow $(Re_{SL}>4000)$ in vertical tubes with different fluid flow patterns and fluid combinations was developed using experimental data available from the literature. The correlation presented herein originates from a careful analysis of the major non-dimensional parameters affecting two-phase heat transfer. This model takes into account the appropriate contributions of both the liquid and gas phases using the respective cross-sectional areas occupied by the two phases. A total of 255 data points from three available studies (which included the four sets of data) were used to determine the curve-fitted constants in the improved correlation. The performance of the new correlation was compared with two-phase correlations from the literature, which were developed for specific fluid combinations.

  • PDF

차세대 원자로 용기내 vessel 내면에서의 대류 열전달특성에 관한 수치해석적 연구 (A numerical study on convective heat transfer characteristics at the vessel surface of the Korean Next Generation Reactor)

  • 정삼두;김창녕
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2000년도 추계학술대회논문집B
    • /
    • pp.228-233
    • /
    • 2000
  • The Korean Next Generation Reactor(KNGR) is a Pressurized Water Reactor adopting direct vessel injection(DVI) to optimize the performance of emergency core cooling system(ECCS). In a certain accident, however, pressurized thermal shock(PTS) of the vessel due to the sudden contact with the injected cold water is expected. In this paper, an accident of Main Steam Line Break(MSLB) has been numerically investigated with direct vessel injections and an increased volume flow rate in some cold legs. Using FLUENT code, temperature distributions of the fluid in the downcomer and of reactor vessel including the core region have been calculated, together with the distribution of convective heat transfer coefficient(CHTC) at the cladding surface of the reactor vessel. The result shows that some parts of the core region of the reactor vessel have higher temperature gradient expressing higher thermal stress.

  • PDF

이중 충돌 제트를 갖는 내부 유로의 열전달 계수 측정 (Measurement of Heat Transfer Coefficient in a Duct with Double Imingement Jets)

  • 곽재수
    • 한국항공운항학회지
    • /
    • 제14권1호
    • /
    • pp.9-14
    • /
    • 2006
  • Averaged heat transfer coefficients in the trailing edge model of a turbine blade with double impingements were measured using transient liquid crystals technique and conventional copper plate-thermocouple technique. The detailed distributions of heat transfer coefficients by transient liquid crystals technique were also presented. Results showed that increased heat transfer coefficient due to the inpingements and the averaged heat transfer coefficients increased as Reynolds number increased. Results by transient liquid crystals technique showed that the heat transfer coefficient strongly depended on the main stream temperature used in heat transfer coefficient calculation. The averaged heat transfer coefficients measured by different methods showed similar trend as Reynolds number changed, but the value varied up to 40% depending on the measurement technique.

  • PDF

Evaporating Heat Transfer Characteristics of R-l34a in a Horizontal Smooth Channel

  • Pamitran, A.S.;Choi, Kwang-Il;Oh, Jong-Taek;Oh, Hoo-Kyu
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • 제14권4호
    • /
    • pp.156-165
    • /
    • 2006
  • Convective boiling heat transfer coefficients were measured in a horizontal minichannel with R-l34a. The test section was made of stainless steel tube with an inner diameter of 3.0 mm and a length of 2m. It was uniformly heated by applying electric current directly to the tube. Local heat transfer coefficients were obtained for heat fluxes from 10 to $40kW/m^2$, mass fluxes from 200 to $600kgT/m^2s$, qualities up to 1.0, and the inlet saturation temperature of $10^{\circ}C$. The experimental results were mapped on Wojtan et $al.'s^(7)$ and Wang et $al.'s^(8)$ flow pattern maps. The nucleate boiling was predominant at low vapor quality whereas the convective boiling was predominant at high vapor quality. Laminar flow appeared in the flow with minichannel. The experimental results were compared with six existing two-phase heat transfer coefficient correlations. A new boiling heat transfer coefficient correlation based on the superposition model for refrigerants was developed with mean and average deviations of 10.39% and -3.66%, respectively.

아이스 슬러리의 원형관내 대류열전달에 관한 연구 (Convective Heat Transfer of Using an Ice Slurry in n circular pipe)

  • 정동주;최은수
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2000년도 추계학술대회논문집B
    • /
    • pp.130-135
    • /
    • 2000
  • To enhance heat transfer characteristics of water, fine ice was added to it. The convective heat transfer characteristics of the ice slurry were investigated in a flow loop with a constant heat flux test section. The Nusselt number and Fanning friction coefficient of water flow were found to be similar to the expected curve by Petukhov. The Nusselt number of the ice sin flow was higher than the Nusselt number of water. Effective thermal capacity of the 10.84% ice slurry was found to have 2.39 times of the thermal capacity of water.

  • PDF

초음속 유동내 원형 2차분사 제트 주변에서의 표면 열전달 현상 연구 (Study on the Surface Heat Transfer Around a Circular Secondary Jet in the Supersonic Flow)

  • 이종주;유만선;조형희
    • 한국추진공학회지
    • /
    • 제11권2호
    • /
    • pp.47-53
    • /
    • 2007
  • 본 논문에서는 초음속유동장 내에 분사된 2차 분사유동과 주유동의 상호작용에 의한 2차 분사노즐 주변에서의 열전달 현상을 관찰하였다. 벽면에는 등열유속조건을 주었다. 제트 자유유동간 운동량비(Jet to Freestream Momentum Ratio, J)에 따라 2차 분사를 초음속 유동장에 분사시켰으며, 적외선 카메라를 이용하여 2차 분사노즐 주변 벽면온도를 측정하였고, 이를 통하여 대류 열전달계수를 제시하였다.