• Title/Summary/Keyword: Convection-Diffusion problems

Search Result 35, Processing Time 0.021 seconds

Unstructured Pressure Based Method for All Speed Flows (전 속도영역 유동을 위한 비정렬격자 압력기반해법)

  • Choi, Hyung-Il;Lee, Do-Hyung;Maeng, Joo-Sung
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.11
    • /
    • pp.1521-1530
    • /
    • 2002
  • This article proposes a pressure based method for predicting flows at all speeds. The compressible SIMPLE algorithm is extended to unstructured grid framework. Convection terms are discretized using second-order scheme with deferred correction approach. Diffusion term discretization is based on structured grid analogy that can be easily adopted to hybrid unstructured grid solver. This method also uses node centered scheme with edge based data structure for memory and computing time efficiency of arbitrary grid types. Both incompressible and compressible benchmark problems are solved using the above methodology. The demonstration of this method is extended to slip flow problem that has low Reynolds number but compressibility effect. It is shown that the proposed method can improve efficiency in memory usage and computing time without losing any accuracy.

Sensitivity analysis of thermal-hydraulic parameters to study the corrosion intensity in nuclear power plant steam generators

  • Tashakor, S.;Afsari, A.;Hashemi-Tilehnoee, M.
    • Nuclear Engineering and Technology
    • /
    • v.51 no.2
    • /
    • pp.394-401
    • /
    • 2019
  • The failure of steam generators (SGs) due to corrosion is one of the most important problems in power plants. Impurities usually accumulate in the hot sides of SG and form deposits on the SG surfaces. In this paper, the sensitivity analysis of the accumulation of water impurities in the heat exchangers of nuclear power plants is presented. The convection-diffusion equation of the liquid phase on the heated surfaces is derived and then solved by the finite volume method. Also, the effects of the thermal-hydraulic parameters in the form of dimensionless numbers, such as $Pe_q$, $Pe_u$, $k_q$(relative solubility of impurity between the steam and water) on the impurities concentration are studied.

A Quasi Two-Dimensional Model for Gas Discharge Simulation Using FE-FCT Method (기체 방전의 시뮬레이션을 위한 FE-FCT를 이용한 준 2차원적 수치 모델)

  • Koh, Wook-Hee;Park, In-Ho
    • Journal of the Korean Vacuum Society
    • /
    • v.17 no.6
    • /
    • pp.511-517
    • /
    • 2008
  • A quasi two-dimensional model for numerical simulation of gas discharge is presented, based on the finite-element flux-corrected transport method. A one-dimensional continuity convection-diffusion equation coupled Poisson's equation is solved to calculate the charge density variation and the electric field is evaluated by the classical disk method. Results calculated for various benchmark problems verify the accuracy of the proposed model and illustrate its performance. This model has been applied to a streamer simulation, and the results are shown to agree well with previously published results.

Improvement of crossflow model of MULTID component in MARS-KS with inter-channel mixing model for enhancing analysis performance in rod bundle

  • Yunseok Lee;Taewan Kim
    • Nuclear Engineering and Technology
    • /
    • v.55 no.12
    • /
    • pp.4357-4366
    • /
    • 2023
  • MARS-KS, a domestic regulatory confirmatory code of Republic of Korea, had been developed by integrating RELAP5/MOD2 and COBRA-TF. The integration of COBRA-TF allowed to extend the capability of MARS-KS, limited to one-dimensional analysis, to multi-dimensional analysis. The use of COBRA-TF was mainly focused on subchannel analyses for simulating multi-dimensional behavior within the reactor core. However, this feature has been remained as a legacy without ongoing maintenance. Meanwhile, MARS-KS also includes its own multidimensional component, namely MULTID, which is also feasible to simulate three-dimensional convection and diffusion. The MULTID is capable of modeling the turbulent diffusion using simple mixing length model. The implementation of the turbulent mixing is of importance for analyzing the reactor core where a disturbing cross-sectional structure of rod bundle makes the flow perturbation and corresponding mixing stronger. In addition, the presence of this turbulent behavior allows the secondary transports with net mass exchange between subchannels. However, a series of assessments performed in previous studies revealed that the turbulence model of the MULTID could not simulate the aforementioned effective mixing occurred in the subchannel-scale problems. This is obvious consequence since the physical models of the MULTID neglect the effect of mass transport and thereby, it cannot model the void drift effect and resulting phasic distribution within a bundle. Thus, in this study, the turbulence mixing model of the MULTID has been improved by means of the inter-channel mixing model, widely utilized in subchannel analysis, in order to extend the application of the MULTID to small-scale problems. A series of assessments has been performed against rod bundle experiments, namely GE 3X3 and PSBT, to evaluate the performance of the introduced mixing model. The assessment results revealed that the application of the inter-channel mixing model allowed to enhance the prediction of the MULTID in subchannel scale problems. In addition, it was indicated that the code could not predict appropriate phasic distribution in the rod bundle without the model. Considering that the proper prediction of the phasic distribution is important when considering pin-based and/or assembly-based expressions of the reactor core, the results of this study clearly indicate that the inter-channel mixing model is required for analyzing the rod bundle, appropriately.

Numerical Study of Thermo-hydraulic Boundary Condition for Surface Energy Balance (지표면 열평형의 열-수리적 경계조건에 대한 수치해석)

  • Shin, Hosung;Jeoung, Jae-Hyeung
    • Journal of the Korean Geotechnical Society
    • /
    • v.37 no.12
    • /
    • pp.25-31
    • /
    • 2021
  • Boundary conditions for thermal-hydraulic problems of soils play an essential role in the numerical accuracy. This study presents a boundary condition considering the thermo-hydraulic interaction between the ground and the atmosphere. Ground surface energy balance consists of solar radiation, ground radiation, wind convection, latent heat from water evaporation, and heat conduction to the ground. Equations for each heat flux are presented, and numerical analyses are performed in conjunction with the FEM program for the thermal-hydraulic phenomenon of unsaturated soils. Numerical results using the weather data at the Ulsan Meteorological Observatory are similar to the measured surface temperature. Latent heat caused by water evaporation during the daytime lowers the surface temperature of the bare soil, and a thermal equilibrium is reached at nighttime when the effect of the ground condition is significantly reduced. The temperature change of the surface ground is diminished at the deeper ground due to its thermal diffusion. Numerical analysis where the surface ground temperature is the primary concern requires considering the thermo-hydraulic interaction between the ground and the atmosphere.