• Title/Summary/Keyword: Convection cells

Search Result 65, Processing Time 0.02 seconds

Influence of fin partitioning of a Rayeigh-Bénard cavity at low Rayleigh numbers

  • Zilic, Adis;Hitt, Darren L.
    • Advances in aircraft and spacecraft science
    • /
    • v.5 no.4
    • /
    • pp.411-430
    • /
    • 2018
  • This computational study examines the augmentation of classic 2-D Rayleigh-$B{\acute{e}}nard$ convection by the addition of periodically-spaced transverse fins. The fins are attached to the heated base of the cavity and serve to partition the cavity into 'units' with different aspect ratios. The respective impacts upon heat transfer of the fin configuration parameters - including spacing, height, thickness and thermal conductivity - are systematically examined through numerical simulations for a range of laminar Rayleigh numbers (0 < Ra < $2{\times}10^5$) and reported in terms of an average Nusselt number. The selection of the low Rayleigh number regime is linked to likely scenarios within aerospace applications (e.g. avionics cooling) where the cavity length scale and/or gravitational acceleration is small. The net heat transfer augmentation is found to result from a combination of competing fin effects, most of which are hydrodynamic in nature. Heat transfer enhancement of up to $1.2{\times}$ that for a Rayleigh-$B{\acute{e}}nard$ cavity without fins was found to occur under favorable fin configurations. Such configurations are generally characterized by short, thin fins with half-spacings somewhat less than the convection cell diameter from classic Rayleigh-$B{\acute{e}}nard$ theory. In contrast, for unfavorable configurations, it is found that the introduction of fins can result in a significant reduction in the heat transfer performance.

Transition of Natural Convective Flows Subjected to Small-Wave-Number Sinusoidal Wall Temperatures with Phase Difference (위상 차이가 있는 작은 파동수의 정현적인 벽면 온도 하에서의 자연 대류 유동의 천이)

  • Yoo, Joo-Sik
    • 대한공업교육학회지
    • /
    • v.33 no.2
    • /
    • pp.300-311
    • /
    • 2008
  • This study investigates the natural convection of air(Pr=0.7) between two walls having a small- wave- number sinusoidal temperature distributions with a phase difference. The wave number and the phase difference of wall temperatures are k=0.5 and ㄱ/2, respectively. In the conduction-dominated regime at small Rayleigh number, two slightly inclined cells are formed over one wave length. At higher Rayleigh number, however, multicellular convection occurs in thermally unstable region. A spatial symmetry is intermittently broken in the transient period at the Rayleigh number near the critical value. The steady-state flows always satisfy the spatial symmetry. A steep increase of Nusselt number occurs near the Rayleigh number at which transition of flow pattern occurs.

Performance Evaluation of Free breathing Fuel Cell by using Synthetic Jet Air Blower (Synthetic Jet Air Blower를 이용한 Free Breathing 연료전지의 성능 평가)

  • Choi, Jong-Pil;Ku, Bo-Sung;Jang, Jae-Hyuk;Seo, Young-Ho;Kim, Byeong-Hee
    • Proceedings of the KSME Conference
    • /
    • 2008.11b
    • /
    • pp.2834-2838
    • /
    • 2008
  • An free breathing proton exchange membrane fuel cell (PEMFC) was developed. This paper presents a study of the several effect on the performance of a fuel cell such as air flow rate, opening ratio, and cathode structures. Especially, an air flow rate is critical condition to improve the fuel cell performance. In this paper, we developed a synthetic jet micro air blower to supply high stoichiometric air. The synthetic jet actuation is usually generated by a traditional PZT-driven actuator, which consists of a small cylindrical cavity, orifices and PZT diaphragms. In comparison with free convection fuel cells, the forced-convection fuel cell which equipped synthetic jet micro air blower brings higher performance and stability for long term test. Also, power consumption of the synthetic jet micro air blower is under 0.3W. The results show that the maximum power density was $188mW/cm^2$ at $400mA/cm^2$. The maximum power density was higher 40% than power density of free convection fuel cell.

  • PDF

Effects of Surface Radiation on the Unsteady Natural Convection in a Rectangular Enclosure

  • Baek, Seung-Wook;Kim, Taig-Young
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.3 no.1
    • /
    • pp.95-104
    • /
    • 2002
  • Numerical solution of the full Navier-Stokes equation as well as the energy equation has been obtained for the unsteady natural convection in a rectangular enclosure. One side wall was maintained at very high temperature simulating fires. Especially the effect of surface radiation was taken into account. While the enclosed air was assumed to be transparent, the internal walls directly interacted one another through the surface radiation. Due to a significant temperature difference in the flow field, the equation of state was used instead of the Boussinesq approximation. It was found that the rapid heating of the adiabatic ceiling and floor by the incoming radiation from the hot wall made the evolution at thermo-fluid field highly unstable in the initial period. Therefore, the secondary cells brought about at the floor region greatly affected the heat transfer mechanism inside the enclosure. The heat transfer rate was augmented by the radiation, resulting in requiring less time for the flow to reach the steady state. At the steady state neglecting radiation two internal hydraulic jumps were clearly observed in upper/left as well as in lower/right comer. However, the hydraulic jump in the lower/right comer could not be observed for the case including radiation due to its high momentum flow over the bottom wall. Radiation resulted in a faster establishment of the steady state phenomena.

Natural Convection for Air-Layer between Clothing and Body Skin (의복과 인체의 공기층에 관한 자연대류 특성)

  • Ji, M.K.;Bae, K.Y.;Chung, H.S.;Jeong, H.M.;Chu, M.S.
    • Proceedings of the KSME Conference
    • /
    • 2001.06d
    • /
    • pp.648-653
    • /
    • 2001
  • This study represents the numerical analysis of natural convection of a microenvironments with a air permeability in the clothing air-layer. The clothing air layer of shoulder and arm was used for numerical analysis model. As a numerical analysis method, we adopted a finite volume method for two-dimensional laminar flow, and analyzed the flow and thermal characteristics of velocity, temperature and concentration in the air layer between body and clothing. As a temperature boundary conditions, we considered that a body skin has a high temperature with $34^{\circ}C$ the environmental temperatures are $5,\;15\;and\;25^{\circ}C$ for various permeability coefficients. The distributions of concentration, temperature and velocity were showed that two large cells were. formed at horizontal and vertical air layer, respectively. As the temperature difference between body skin and environment decrease, the heat transfer was decreased rapidly.

  • PDF

A COMPUTATIONAL MODEL FOR OSMOSIS PHENOMENA OF CELLS THROUGH SEMI-PERMEABLE MEMBRANES

  • Kim, Im-Bunm;Ha, Tae-Young;Sheen, Dong-Woo
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.13 no.2
    • /
    • pp.123-140
    • /
    • 2009
  • The effect of a solute concentration difference on the osmotic transport of water through the semi-permeable membrane of a simple cell model is investigated. So far, most studies on osmotic phenomena are described by simple diffusion-type equations ignoring all fluid motion or described by Stokes flow. In our work, as the governing equations, we consider the coupled full Navier-Stokes equations which describe the fluid motion and the full transport equation that takes into account of convection and diffusion effects. A two dimensional finite difference model has been developed to simulate the velocity field, concentration field, and semi-permeable membrane movement. It is shown that the cell swells to regions of lower solute concentration due to the uneven water flux through the semi-permeable membrane. The simulation is applied on a red blood cell geometry and the relevant results are presented.

  • PDF

A Study on Buoyancy Effects in Double-Diffusive Convecting System(II) - Theoretical Study - (이중확산 대류계에서의 부력효과에 관한 연구(II) - 이론적 연구 -)

  • Hong, Nam-Ho;Kim, Min-Chan;Hyun, Myung-Taek
    • Journal of Ocean Engineering and Technology
    • /
    • v.13 no.2 s.32
    • /
    • pp.129-137
    • /
    • 1999
  • The time of the onset of double-diffusive convection in time-dependent, nonlinear concentration fields is investigated theoretically. The initially quiescent horizontal fluid layer with a uniform temperature gradient experiences a sudden concentration change from below, but its stable thermal stratification affects concentration effects in such way to invoke convective motion. The related stability analysis, including Soret effect, is conducted on the basis of the propagation theory. Under the linear stability theory the concentration penetration depth is used as a length scaling factor, and the similarity transform for the linearized perturbation equations. The newlly obtained stability equations are solved numerically. The resulting critical time to mark the onset of regular cells are obtained as a function of the thermal Rayleigh number, the solute Rayleigh number, and the Soret effect coefficient. For a certain value of the Soret effect coefficient, the stable thermal gradient promote double-diffusive convective motion.

  • PDF

Natural Convection for Air-Layer between Body Skin and Clothing with Considering Coefficient of Permeability (투과계수를 고려한 의복과 인체 사이의 공기층에서 자연대류 특성)

  • 지명국;배강렬;정효민;정한식;추미선
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.13 no.12
    • /
    • pp.1282-1287
    • /
    • 2001
  • This study presents the numerical analysis of natural convection of a micro- environments with air permeability in the clothing air-layer. As a numerical model the clothing air layer of shoulder and arm were adopted. Finite volume method for two-dimensional laminar flow was used for the analysis of flow and thermal characteristics of velocity, temperature and concentration in the air layer between body and clothing. As temperature boundary conditions, a body skin has a high temperature with $34^{\circ}C$ and the environmental temperatures are 5, 15 and $25^{\circ}C$ for various permeability coefficients. The distributions of concentration, temperature and velocity are shown that two large cells form at horizontal and vertical air layer, respectively. As the temperature difference between body skin and environment decreases, the heat transfer is decreased rapidly.

  • PDF

Analysis of the West Coast Heavy Snowfall Development Mechanism from 23 to 25 January 2016 (2016년 1월 23일~25일에 발생한 서해안 대설 발달 메커니즘 분석)

  • Lee, Jae-Geun;Min, Gi-Hong
    • Atmosphere
    • /
    • v.28 no.1
    • /
    • pp.53-67
    • /
    • 2018
  • This study examined the lake effect of the Yellow Sea which was induced by the Siberian High pressure system moving over the open waters. The development mechanism of the convective cells over the ocean was studied in detail using the Weather Research and Forecasting model. Numerical experiments consist of the control experiment (CTL) and an experiment changing the yellow sea to dry land (EXP). The CTL simulation result showed distinct high area of relative vorticity, convergence and low-level atmospheric instability than that of the EXP. The result indicates that large surface vorticity and convergence induced vertical motion and low level instability over the ocean when the arctic Siberian air mass moved south over the Yellow Sea. The sensible heat flux at the sea surface gradually decreased while latent heat flux gradually increased. At the beginning stage of air mass modification, sensible heat was the main energy source for convective cell generation. However, in the later stage, latent heat became the main energy source for the development of convective cells. In conclusion, the mechanism of the west coast heavy snowfall caused by modification of the Siberian air mass over the Yellow Sea can be explained by air-sea interaction instability in the following order: (a) cyclonic vorticity caused by diabatic heating induce Ekman pumping and convergence at the surface, (b) sensible heat at the sea surface produce convection, and (c) this leads to latent heat release, and the development of convective cells. The overall process is a manifestation of air-sea interaction and enhancement of convection from positive feedback mechanism.

Design of Serpentine Flow-field Stimulating Under-rib Convection for Improving the Water Discharge Performance in Polymer Electrolyte fuel cells (고분자전해질 연료전지의 물 배출 성능 향상을 위한 촉매층 공급 대류 촉진 사행성 유동장 설계)

  • Choi, Kap-Seung;Bae, Byeong-Cheol;Park, Ki-Won;Kim, Hyung-Man
    • Journal of the Korean Electrochemical Society
    • /
    • v.15 no.2
    • /
    • pp.74-82
    • /
    • 2012
  • Proton exchange membrane fuel cell performance is changed by the complicated physical phenomenon. In this study, water discharge performance of proton exchange membrane fuel cell were performed numerically to compare serpentine channel flow fields of 5-pass 4-turn serpentine and 25 $cm^2$ reaction surface between with and without sub-channel at the rib. Through the supplement of sub channel flow field, it is shown from the results that water removal characteristic inside channel improves because the flow direction of under-rib convection is changed into the sub channel. Reacting gases supplied from entrance disperse into sub channel flow field and electrochemical reaction occurs uniformly over the reaction surface. The results obtained that total current density distributions become uniform because residence time of reacting gases traveling to sub-channel flow field is longer than to main channel.