• Title/Summary/Keyword: Convection Heating System

Search Result 78, Processing Time 0.028 seconds

A Numerical Simulation of Horizontal Convection in Mesoscale (중규모에서의 수평대류에 관한 수치모의)

  • 정우식;이화운
    • Journal of Environmental Science International
    • /
    • v.7 no.2
    • /
    • pp.233-241
    • /
    • 1998
  • This study Is concerned with properties of a thermal convection in a stably stratified Boussinesq fluid caused by partial heating at the lower boundary. For thins purpose, two-dimensional, nonrotating system was employed. U the heating is very strong, convection takes the form of a turbulent plume. Othenuse, remains laminar. If the partial heating at the bottom boundary Is symmetric. the convection takes the form of a trubuient plume. Otherwise remains but beating form Is not so signiacant as to alter the vergence in the lower layer at the center of the partial heating area. The temperature perturbation is characterized by the temperature 'Cross-Over' over the partial heating area. These features are cleared ac- cording to the Increase of temperature difference between the center and side part of the bottom boundary.

  • PDF

A Study on the Characteristic of the Thermal Environment in the Heating System at a Living Room (난방방식에 따른 거실의 열환경 특성에 관한 연구)

  • 이무진;이승수;진영언
    • Journal of the Korean housing association
    • /
    • v.12 no.1
    • /
    • pp.85-92
    • /
    • 2001
  • The purpose of this study is to investigate the characteristic of the thermal environment at a living room by the heating system(floor radiation heating, forced convection heating, combined heating, radiation convection heating), and to compares the change of the thermal environment after operating the heating with after the operation stopped based on the floor radiation heating. This study proposes the basic data for the design and the development of the thermal storage structure heating system which not only utilizes fully the characteristic of the comfortable thermal environment but also reduces the preheating period and be able to use the off-peak electricity.

  • PDF

A Study on the Characteristic of the Thermal Environment in the Cooling System at the Apartment (공동주택 거실의 냉방방식에 따른 열환경 특성에 관한 연구)

  • 이무진
    • Journal of the Korean housing association
    • /
    • v.10 no.4
    • /
    • pp.111-120
    • /
    • 1999
  • The purpose of this study is to evaluate the efficiency of the thermal environment created by the cooling system at the apartment that combines the forced convection cooling(the system reducing humidity from room) with the floor cooling radiation which uses the floor panel from floor heating system, a general residential heating system in Korea. In this study, the combined cooling system in which air supply, spurt temperature difference and interior draft are reduced, is compared with the existing forced convection cooling system. To identify the effect of the comparison concretely, a comparative experiment is carried out on tour conditions, ie, convection cooling, floor radiation convection cooling and floor radiation cooling. Through it the characteristical thermal environment formed within the model room is analyzed, and the conveying system of compressed floor chill and condensation problem are reviewed.

  • PDF

Heat Transfer Characteristics of Coil Tube Heat Exchanger for Hot Water Heating of Greenhouse Thermal Tunnel (보온터널 난방을 위한 온수난방용 코일튜브 열교환기의 열전달 특성)

  • Ryou, Y.S.;Kang, K.C.;Kim, Y.J.;Paek, Y.;Kang, Y.G.;Lee, H.M.
    • Journal of Biosystems Engineering
    • /
    • v.31 no.5 s.118
    • /
    • pp.430-435
    • /
    • 2006
  • Greenhouse horticulture in South Korea covered about 52,000 ha in 2005. Greenhouse area of about 12,000 ha has been heated during winter season with heating cost of $20{\sim}40%$ of total Production cost. Farmers engaged in greenhouse horticulture were changed into aged people. Therefore the laborsaving of working process and the saving of greenhouse heating cost should be accomplished simultaneously to increase income of greenhouse horticulture. The best method for saving of greenhouse heating cost is to install thermal tunnels into greenhouse. Then hot air heaters using fossil fuel should be changed into hot water heaters. In other words air heating using forced convection should be changed into natural convection system. In this research coil tube made of flexible PE pipe was designed as hot water heat exchanger and its heat exchanging characteristics were analyzed. This new heat exchanger has been adopted as a natural convection system for hot water heating of greenhouse horticulture.

An Analytical & experimental study on the thermal performance of trickle solar collector with Sinuous Cross-section (파형 단면을 가진 유하식 집열기의 열적 성능에 대한 이론 및 실험 연구(I))

  • Lee Jong Ho;Chung Mo;Baek Nam Choon;Auh Chungmoo
    • The Magazine of the Society of Air-Conditioning and Refrigerating Engineers of Korea
    • /
    • v.12 no.4
    • /
    • pp.240-251
    • /
    • 1983
  • The municipal government of Daejeon, Korea set up a plan to retrofit solar energy to the existing swimming pool. The pool was constructed in 1980, and meets the requirements of International standard. It will be used for the 1986 Asian Games and the 1988 Seoul Olymipics. The roof structure of the existing pool is to be modified to accomodate trickle solar collectors. In addition, various energy conserving ideas will be applied to the existing building structure. For the prevention of over heating of collectors on the roof, natural air convection scheme will be adopted within the collector system. Natural convection of passive type heating would be also adopted for the space heating of the pool when the system is idle. At present, the pool can be utilized only for two months a year without auxilairy heating. With oil heating, the energy cost would be too high for the normal operation. When this project completed in March 1984, it would be expected to be openable for seven months a year without a significan amount of auxiliary heating. In this project, two dimensional numerical analysis technic have been used to analyse the characterisitics of thermal performance of the swimming pool system. An experimental tat verification of the theoretical analysis have been also attempted.

  • PDF

Heat Emission Characteristics on Natural Convection Radiator with Various Aspect Ratios in Heating Space (난방공간에서 형상비에 따른 자연대류 방열기의 방열특성)

  • Sung, Sun-Kyung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.1
    • /
    • pp.37-42
    • /
    • 2010
  • The objective of this study is to find heat emission characteristics on the natural convection radiator in a heating system when the aspect ratio of radiator is changed. In addition the computer simulation method is used in order to find the characteristics of heat transfer. When the width of the radiator is long and the height of radiator is short, the temperature difference from the floor level 0.5m to about 2.7m above the floor is small. It shows that thermal environment in heating space is good than the other case. For the future, I hope to compare the results between the computer simulation and experimental method for reliability.

Corrosion Failure Analysis of the Convection Part of District Heating Peak Load Boiler (지역난방 첨두부하보일러 대류부 부식 파손 분석)

  • Kim, Youngsu;Chae, Hobyung;Hong, Minki;Song, Min Ji;Cho, Jeongmin;Kim, Woo Cheol;Ha, Tae Baek;Lee, Soo Yeol
    • Corrosion Science and Technology
    • /
    • v.18 no.2
    • /
    • pp.55-60
    • /
    • 2019
  • Corrosion failure in the convection part of peak load boiler (PLB) of the district heating system led to water leakage. Herein, Internal Rotary Inspection System (IRIS) inspection was employed to examine wall thinning and the cause of leakage in the flue tube. The corrosive products of the turbulator and tube were investigated using scanning electron microscope combined with energy dispersive spectroscopy, X-ray diffraction, and inductively coupled plasma (ICP). Majority of the serious corrosion damage was observed near the turbulator located in the upper flue tube. ICP analysis of the boiler water revealed oxide formation of sodium chloride in the lower end part of the flue tube. A cross-sectional view of the turbulator revealed the presence of double-layers of the oxide film, indicating environmental change during operation associated with water leakage. The outer surface of the turbulator consisted of the acid oxides such as $NO_x$ and $SO_x$ along with sodium and chloride ions. Dew-point corrosion is hypothesized as the main cause for the formation of acid oxides in the region of contact of the flue tube and the turbulator.

The A Study on the Non-powered Circulator to Solve the Temperature Stratification of a Convection Heating Device during Winter Using 3D Printer (3D프린터를 이용한 겨울철 대류난방기구의 온도 성층화 해결을 위한 무동력 서큘레이터 디자인에 관한 연구)

  • Kang, Hee-Ra
    • Journal of Digital Convergence
    • /
    • v.19 no.6
    • /
    • pp.285-292
    • /
    • 2021
  • Due to the recent Corona 19 outbreak, camping culture is rapidly drawing attention from many people. Convective heating devices, which many campers use during winter, have the temperature stratification problem. To solve this problem, various power circulators are being used. Several non-powered circulators are also on sale, but the direction of the circulator is designed to be at the right angle relative to the convection heating mechanism and the circulator does not properly play the role of air circulation. To solve this problem, a 3D printer is used to design a non-powered circulator in the same direction as the convection heating mechanism. Electricity is generated without power using Peltier element and ceramic paper and the circulator is produced to withstand heat using HTPLA-CF filament. This study presents a method to solve the temperature stratification problem through efficient convective circulation. In addition, the purpose of this study is to manufacture products at a lower cost by using a 3D printer.

Field Measurements and CFD Simulations of Indoor Thermal Environments in the Assembly Hall (대형 강의실의 실내 열환경 실측 및 컴퓨터시뮬레이션 비교 연구)

  • Yoon, JaeOck
    • KIEAE Journal
    • /
    • v.4 no.3
    • /
    • pp.179-186
    • /
    • 2004
  • The evaluation of the indoor environment of the Assembly Hall in the University, which is designed to be a large space, requires efficient design of its heating system that takes into consideration natural convection and the characteristics of the occupant's spaces. Indoor thermal environment was measured in the field and simulated with CFD code. The estimations of temperature distribution and indoor airflow distribution must be carried out simultaneously, as the thermal stratification is induced by natural convection flows. In order to simulate the even distribution of factors affecting the indoor environment, including temperature and airflow, Phoenics is used. The turbulent flow model adopted is the RNG k- model. The inlets and outlets of the air-conditioning systems, material and thermal properties, and the size of the test room ($35m{\times}18m{\times}10m$) are used for the simulation. Since the Assembly Hall is symmetric, half of the space is simulated. A Cartesian grid is used for calculation and the number of grids are respectively $60{\times}45{\times}35$. The results of the computer simulation during winter conditions are compared with the measurements at the typical points in the assembly hall with the heating system. After evaluating the results of the computer simulations, the methods of the heating system and layout are suggested.

Enhancement of Mass Transfer of an Enclosed Fluid by Time-periodic Thermal Forcing (간헐 열전달을 이용한 밀폐용기내의 물질전달 향상)

  • Kwak H. S.
    • Journal of computational fluids engineering
    • /
    • v.7 no.1
    • /
    • pp.36-43
    • /
    • 2002
  • A numerical investigation is made of unsteady double-diffusive convection of a Boussinesq fluid in a rectangular cavity subject to time-periodic thermal excitations. The fluid is initially stratified between the top endwall of low solute concentration and the bottom endwall of high solute concentration. A time-dependent heat flux varying in a square wave fashion, is applied on one sidewall to induce buoyant convection. The influences of the imposed periodicity on double-diffusive convection are examined. A special concern is on the occurrence of resonance that the fluctuations of flow and attendant heat and mass transfers are mostly amplified at certain eigenmodes of the fluid system. Numerical solutions illustrate that resonant convection results in a conspicuous enhancement of time-mean mass transfer rate.