• 제목/요약/키워드: Convection Heat Transfer

검색결과 976건 처리시간 0.027초

근적외선 농수산물 건조기의 복합열전달특성에 관한 수치적 연구 (Numerical Study on Combined Heat Transfer in NIR Dryer for Agricultural and Marine Products)

  • 최훈기
    • Journal of Biosystems Engineering
    • /
    • 제31권5호
    • /
    • pp.395-402
    • /
    • 2006
  • Mixed heat transfer in an indirected NIR (Near Infrared Ray) dry chamber was investigated numerical analysis. It is Important that the miked heat transfer effects on double parameters which the Reynolds number and the position of emit lamp. Reynolds number are based on the outer diameter of the cylinder range from 103 to $30{\times}105$. Four difference heat transfer regimes of behavior are apparent: forced convection and radiation on the outer surface of the cylinder, pure conduction, pure natural convection and radiation between lamp surface and inner surface of the cylinder. The temperature and flow patterns are illustrated by iso-contour lines for the double parameters. Also presented are results on the convective heat transfer flux and the radiative heat transfer flux as increased with Reynolds number.

격판을 가진 수평환상공간에서의 자연대류 열전달 (Natural Convection Heat Transfer from a Horizontal Annulus with Spacers)

  • 이범철;정한식;권순석
    • 대한기계학회논문집
    • /
    • 제13권1호
    • /
    • pp.153-160
    • /
    • 1989
  • 본 연구는 수평전도관과 수평원통 사이의 환상공간에 수직격판이 부착된 경우와 수평직판이 부착된 경우에 Rayleigh수와 무차원 관열전도율을 변수로하여 수직해석과 Mach-Mehnder 간섭계를 이용한 실험으로 자연대류 열전달특성을 연구 하였다.

$Al_2O_3$ 세라믹스 열충격에 미치는 냉각 조건의 영향 (Effect of Cooling Rate on Thermal Shock Behavior of Alumina Ceramics)

  • 한봉석;이홍림;전명철
    • 한국세라믹학회지
    • /
    • 제34권7호
    • /
    • pp.767-773
    • /
    • 1997
  • Thermal shock behavior of alumina ceramics were studied by quenching the heated alumina specimen into the water of various temperatures over 0~10$0^{\circ}C$. The critical thermal shock temperature difference ( Tc) of the specimen decreased almost linearly from 275$^{\circ}C$ to 20$0^{\circ}C$ with increase in the cooling water temperature over 0~6$0^{\circ}C$. It is probably due to the increase of the maximum cooling rate which is dependent of the convection heat transfer coefficient. The convection heat transfer coefficient is a function of the temperature of the cooling water. However, the critical thermal shock temperature difference( Tc) of the specimen increased at 25$0^{\circ}C$ over 80~10$0^{\circ}C$ due to the film boiling of the cooling water. The maximum cooling rate, which brings about the maximum thermal stress of the specimen in the cooling process, was observed to increase linearly with the increase in the quenching temperature difference of the specimen due to the linear relationship of the convection heat transfer coefficient with the water temperature over 0~6$0^{\circ}C$. The critical maximum cooling rate for thermal shock fracture was observed almost constant to be about 260$\pm$1$0^{\circ}C$/s for all water temperatures over 0~6$0^{\circ}C$. Therefore, thermal shock behavior of alumina ceramics is greatly influenced by the convection heat transfer coefficient of the cooling water.

  • PDF

원형휜-원형관 열교환기에 대한 자연대류 열전달상관식 (Natural Convection Correlation of Circular Finned Tube Heat Exchanger)

  • 강희찬;장현순
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제32권5호
    • /
    • pp.747-752
    • /
    • 2008
  • An experimental study has been conducted on the natural convection heat transfer for the 7 kinds of circular finned tube heat exchangers. Empirical correlation was suggested at the range of 3,500

수직 채널내의 가열 돌출 배열에서의 대류 열전달 (A Study of the Convective Heat Transfer in a Vertical Channel of an Array of Heated Protrusions)

  • B. J, Baek
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제22권6호
    • /
    • pp.844-853
    • /
    • 1998
  • Natural and forced convection experiments were carried out in order to investigate the effects of channel spacing gap between protrusions and number of rows of protrusion, In natural convection the optimum channel spacing was found to be approximately 20mm regardless of the protrusion gaps. For optimum channel spacing the heat transfer coefficients were converged to an asymptotic value after the fourth row. The heat transfer coefficient for each row approaches to constant values for protrusion gaps larger than 10 mm. An experimental correlation has been suggested by using a modified Rayleigh number based on the dimensionless characteristic length(G/L). In forced convec-tion the heat transfer coefficients were not merged to an asymptote until the fifty row and increases as the channel spacing at the constant Reynolds number decreases.

  • PDF

고체 열원이 존재하는 공동 내의 복합열전달 문제의 유한요소해석 (A Finite Element Analysis of Conjugate Heat Transfer Inside a Cavity with a Heat Generating Conducting Body)

  • 안영규;최형권;용호택
    • 대한기계학회논문집B
    • /
    • 제33권3호
    • /
    • pp.170-177
    • /
    • 2009
  • In the present study, a finite element analysis of conjugate heat transfer problem inside a cavity with a heat-generating conducting body, where constant heat flux is generated, is conducted. A conduction heat transfer problem inside the solid body is automatically coupled with natural convection inside the cavity by using a finite element formulation. A finite element formulation based on SIMPLE type algorithm is adopted for the solution of the incompressible Navier-Stokes equations coupled with energy equation. The proposed algorithm is verified by solving the benchmark problem of conjugate heat transfer inside a cavity having a centered body. Then a conjugate natural heat transfer problem inside a cavity having a heat-generating conducting body with constant heat flux is solved and the effect of the Rayleigh number on the heat transfer characteristics inside a cavity is investigated.

Numerical investigation of two-phase natural convection and temperature stratification phenomena in a rectangular enclosure with conjugate heat transfer

  • Grazevicius, Audrius;Kaliatka, Algirdas;Uspuras, Eugenijus
    • Nuclear Engineering and Technology
    • /
    • 제52권1호
    • /
    • pp.27-36
    • /
    • 2020
  • Natural convection and thermal stratification phenomena are found in large water pools that are being used as heat sinks for decay heat removal from the reactor core using passive heat removal systems. In this study, the two-phase (water and air) natural convection and thermal stratification phenomena with conjugate heat transfer in the rectangular enclosure were investigated numerically using ANSYS Fluent 17.2 code. The transient numerical simulations of these phenomena in the full-scale computational domain of the experimental facility were performed. Generation of water vapour bubbles around the heater rod and evaporation phenomena were included in this numerical investigation. The results of numerical simulations are in good agreement with experimental measurements. This shows that the natural convection is formed in region above the heater rod and the water is thermally stratified in the region below the heater rod. The heat from higher region and from the heater rod is transferred to the lower region via conduction. The thermal stratification disappears and the water becomes well mixed, only after the water temperature reaches the saturation temperature and boiling starts. The developed modelling approach and obtained results provide guidelines for numerical investigations of thermal-hydraulic processes in the water pools for passive residual heat removal systems or spent nuclear fuel pools considering the concreate walls of the pool and main room above the pool.

직접접촉식 열교환기내에서 물과 배기가스의 직접접촉에 의한 열 및 물질전달 (Heat and Mass Transfer between Hot Waste Gas and Cold Water in a Direct Contact Heat Exchanger)

  • 이금배
    • 대한기계학회논문집
    • /
    • 제16권6호
    • /
    • pp.1171-1178
    • /
    • 1992
  • 본 연구에서는 직접접촉식 열교환기를 이용한 실험을 통하여 열교환기 설계에 가장 중요한 열교환기 단위 체적당 총괄 열전달 계수를 시스템의 작동조건에 따라 구 하여 실제 설계자료로 이용하는 데 그 목적이 있다.

평판핀에서의 강제대류-전도 과도 복합열전달에 관한 연구 (A study on unsteady conjugate forced convection-conduction heat transfer from a plate fin)

  • 조진호;이상균
    • 오토저널
    • /
    • 제11권1호
    • /
    • pp.20-30
    • /
    • 1989
  • The unsteady conjugate forced convection-conduction heat transfer from a plate fin is numerically studied. The external forced flow is steady but the temperature of the fin base is an exponential change with time. Therefore, the unsteady energy equations of the fluid and the fin are solved simultaneously under the conditions of equality in heat flux and temperature at the fluid-fin interface at every instant of time. Numerical results are given for various quantities of interest including the local heat transfer coefficient, the local heat flux, the total heat transfer rate and the temperature distribution of fin under the effects of the convection-conduction parameter and the ratio of thermal diffusivities. The results of the present numerical solution have been compared with those of the conventional fin theory.

  • PDF

원형 히트싱크의 자연대류 해석 (Analysis of Natural Convection around Radial Heat Sink)

  • 유승환;이관수
    • 대한설비공학회:학술대회논문집
    • /
    • 대한설비공학회 2009년도 하계학술발표대회 논문집
    • /
    • pp.1172-1176
    • /
    • 2009
  • In the present study, natural convection over a heat sink with a horizontal circular base and rectangular fins was numerically analyzed. To calculate natural convection heat transfer, the assumptions of ideal gas and laminar flow were made for air. Flow patterns around the heat sink were chimney-like. The resultant temperature distribution on the circular base appeared almost uniform. Parametric studies were performed to compare the effects of fin length, fin height, the ideal number of fins, and heat flux on the average temperature of a heat sink and the average heat transfer coefficient from the heat sink array. Correlation to predict the average Nusselt number was presented.

  • PDF