• Title/Summary/Keyword: Controlling of Properties

Search Result 1,020, Processing Time 0.028 seconds

Design of Repetitive Impact Tester and Mechanical Properties of Plastic Due to Cyclic Impacts (반복 충격장치 설계 및 반복충격에 의한 플라스틱 재료특성 연구)

  • Lee, Joon-Hyun;Lee, Sang-Pill;Lee, Jin-Kyung
    • Journal of Power System Engineering
    • /
    • v.21 no.5
    • /
    • pp.29-34
    • /
    • 2017
  • Many household appliances, including vacuum cleaners, are being subjected to various of impact damages, and made of plastic. However, researches on the damage of appliances materials by repetitive impacts have been rarely conducted. the mechanical stress exerted upon impact-modified polycarbonate (PC) has a great influence not only on the quality of the product but also on the life span. The purpose of this research was to quantify the effects of repetitive impact on the polycarbonate. Second, it was to design the repetitive impact tester for controlling the impact energy. The mechanical properties of tensile strength, yielding stress and strain on the specimens subjected to cyclic impacts were discussed. Tensile strength was sharply declined at the beginning of the impact cycles, while the strain gradually decreased during impact cycles.

An Experimental Study of Heat Transfer Analysis in Molding the Rubber Bearing for Seismic Isolator (고무 면진 베어링 몰딩과정의 열전달 해석 및 실험)

  • Kang, Gyung-Ju;Moon, Byung-Young;Kang, Beom-Soo;Kim, Kye-Soo;Jung, Kung-Soo
    • Proceedings of the KSME Conference
    • /
    • 2001.06c
    • /
    • pp.275-280
    • /
    • 2001
  • Seismic isolator system is one of the most widely used base isolation system in order to control the vibration of structure against earthquake excitation. The evaluation of vulcanization time in molding the rubber bearing is very important for both proper ability of isolator and efficiency of manufacture. This paper deals with experimental measurement of temperature of isolator with senor inside in it, and compared with the result of FEA in order to evaluate the vulcanization time. Properties of rubber bearing which is used in the FEA are obtained by controlling the specific heat of rubber. With the obtained properties of rubber, the isolator is analysed by FEA. As a result, an appropriate analytical vulcanization time is obtained. This time is regarded as an appropriate temperature, which is used to effective manufacture.

  • PDF

The Microscopic Surface Properties of Rhodamine Derivatives in EL System (EL시스템의 Rhodamine 유도체화합물의 표면특성)

  • 박수길;조성렬;손원근;조병호;임기조;이주성
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1997.04a
    • /
    • pp.265-268
    • /
    • 1997
  • Electroluminescent(EL) devices are constructed using multilayer organic thin film. A cell structure of glass substrate/Indium-Tinoxide/TPD as a hole transporting layer/Alq3+Rhodamine 101 perchrolate(Red3) as an emitting layer/Alq3 as an electrron transporting layer/Al as an electrode was employed. Optimal thickness of emitting layer in EL cell was performed from the viewpoint of the electronics properties of emitting layers. The general vapor-deposition method was used to control the thickness of omitting layer in EL devices and electro-optical characteristics were measured. It is clarified that controlling thickness of emitting layer in vapor-deposition film had an effect on the change of carrier injection and EL spectrum. The intensity of red omission with luminance of 81cd/$m^2$ was achived at 11V driving voltage. The surface morphology of emitting layer in EL devices was investigated.

  • PDF

Transdermal Permeation of Riboflavin in Ointment Bases Using Gums & Enhancers (Gum류의 연고제제와 흡수촉진제가 Riboflavin의 경피흡수에 미치는 영향)

  • 오세영;황성규;김판기
    • Journal of Environmental Health Sciences
    • /
    • v.26 no.2
    • /
    • pp.91-96
    • /
    • 2000
  • We investigated characters of transdermal therapeutic system(TTS) and the skin permeability of that with applying drug delivery system(DDS). Natural gums were selected as material of TTS. The permeation of natural gums ointment containing drug in rat skin using diffusion cell model. Permeation properties of materials were investigated for water soluble drug such as riboflavin in vitro. We used glycerin, PEG 600 and oleic acid as enhancers. Since dermis has more hydration than the stratum corneum, skin permeation rate at steady state was highly influenced when glycerin was used in riboflavin. The permeation rate of content enhancer and drug was found to be faster than that of content riboflavin only. These results showed that skin permeation rate of drug across the composite was mainly dependent on the property of ointment base and drug. All the gum ointment tested showed good safety. Proper selection of the materials which resemble and enhance properties of the delivering drug was found to be important in controlling the skin permeation rate.

  • PDF

Molecular imaging of polarized macrophages in tumors

  • Ran Ji Yoo;Yun-Sang Lee
    • Journal of Radiopharmaceuticals and Molecular Probes
    • /
    • v.7 no.1
    • /
    • pp.41-49
    • /
    • 2021
  • Diversity and flexibility are two typical hallmarks of macrophages. Two types of macrophages, M1(classically activated macrophages) and M2(alternatively activated macrophages) exist at both ends of the commonly known macrophage polarization. M1 macrophages have inflammatory properties and are primarily responsible for defending against invading bacteria in our body. On the other hand, M2 macrophages are involved in anti-inflammatory responses and tissue remodeling. Polarized migration of macrophages is of increasing interest in regulating the initiation, generation, and resting phases of inflammatory diseases. In this review, it intend to discuss the properties and functions of tumor-associated macrophages based on polarized macrophages that affect inflammatory diseases. In addition, the purpose of this study is to investigate a molecular imaging approach that targets macrophages that affect tumor growth by controlling the polarization of macrophages that affect tumor diagnosis and treatment.

Electrochemical Properties of EDLC Electrodes Prepared by Acid and Heat Treatment of Commercial Activated Carbons

  • Wu, Jin-Gyu;Hong, Ik-Pyo;Park, Sei-Min;Lee, Seong-Young;Kim, Myung-Soo
    • Carbon letters
    • /
    • v.9 no.2
    • /
    • pp.137-144
    • /
    • 2008
  • The commercial activated carbons are typically prepared by activation from coconut shell char or coal char containing lots of inorganic impurities. They also have pore structure and pore size distribution depending on nanostructure of precursor materials. In this study, two types of commercial activated carbons were applied for EDLC electrode by removing impurities with acid treatments, and controlling pore size distribution and contents of functional group with heat treatment. The effect of the surface functional groups on electrochemical performance of the activated carbon electrodes was investigated. The initial gravimetric and volumetric capacitance of coconut based activated carbon electrode which was acid treated by $HNO_3$ and then heat treated at $800^{\circ}C$ were 90 F/g and 42 F/cc respectively showing 94% of charge-discharge efficiency. Such a good electrochemical performance can be possibly applied to the medium capacitance of EDLC.

Effect of Alloying Elements and Heat Treatment Temperatures on the Retained Austenite of Austempered Ductile iron (오스템퍼드구상흑연주철(球牀黑鉛鑄鐵)의 잔류(殘留)오스테나이트 조직(組織)에 미치는 합금원소(合金元素) 및 열처리온도(熱處理溫度)의 영향(影響)에 관한 연구(硏究))

  • Kim, Deog-Ryul;Cheon, Byung-Wook;Kim, Chang- Gue;Choi, Chang-Ock
    • Journal of Korea Foundry Society
    • /
    • v.13 no.1
    • /
    • pp.50-61
    • /
    • 1993
  • Retained austenite in matrix of austempered ductile iron has been well-known as a parameter in controlling mechanical properties, but investigation to obtain quantitative relationship with mechanical properties lack. Therefore, this study executed austempering treatment at various temperatures on ductile iron alloyed with Mo, Ni, Cu. In consequence, microstructure of retained austenite transformed coarse, and quantity increased according as austempering temperature increased. After heat-treatment, microstructure of specimen alloyed with Ni was fine, and toughness improved. At austempering temperature up to $400^{\circ}C$, carbide precipitation started in retained austenite. In consequence, afforded cause of hardness increase, a lot of increase did not arise for coarse structure.

  • PDF

Study on Continuous-Flow Particle Separation in a Microchannel using Dielectrophoresis (마이크로 채널 내에서의 유전영동을 이용한 입자의 연속적인 분리에 대한 연구)

  • Ryu, Jeong-Eun;Kang, Kwan-Hyoung
    • Journal of the Korean Society of Visualization
    • /
    • v.7 no.2
    • /
    • pp.56-63
    • /
    • 2010
  • In this work, a dielectrophoresis-based particle-separation device is developed which is to be used to continuously separate particles in microchannels. We fabricated the particle-separation device with combining the benefits of electrode-based DEP and insulator-based DEP. The DEP forces are generated by an array of electrodes located in both sidewalls of a main channel. According to the magnitude and frequency of electrical signals, particles with different dielectric properties experience different DEP forces, and therefore, continuously move along different streamlines in the main flow channel without need of pre-focusing process. Based on this mechanism, we examined the performance of the device by controlling the trajectory of polystyrene particles. This device is applicable to the investigation of dielectric properties of biological cells as well as the continuous separation of biological cells.

Controlling Work Function of Graphene by Chemical Doping

  • Lee, Ji-A
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.628-628
    • /
    • 2013
  • Graphene, a single layer of graphite, has raised extensive interest in a wide scientific community for its extraordinary thermal, mechanical, electrical and other properties [1,2]. However, because of zero-band gap of graphene, it is difficult to apply for electronic applications. To overcome this problem, chemical doping is one of way to opening grahene bandgap. According to experimental results, by changing doping concentration and doping time, it is possible to control work function of graphene. We can obtain results through raman spectroscopy, UPS, Sheet resistance. Moreover, electronic properties of doped graphene were studied by making field effect transistors. We were able to control the doping concentration, dirac point of graphene and work function of graphene by formng n-type, p-type doping materials. In this research, the chemicals of diazonium salts, viologen, etc. were used for extrinsic doping.

  • PDF

New Methods in the Technology of Electroluminescent Phosphors

  • Sychov, M.M.;Bahmet'ev, V.V.;Khavanova, L.V.;Kuznetsov, A.I.;Smimov, A.;Vasil'eva, I.V.;Mjakin, S.V.;Nakanishi, Y.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2003.07a
    • /
    • pp.1065-1070
    • /
    • 2003
  • Controlling synthesis conditions of ZnS:Cu,Al and ZnS:Cu electroluminescent phosphors we optimized particle size, color properties and efficiency. Surface properties were studied by new method and showed correlation with luminescence as shown by the analysis of EL spectra with Fok-Alentsev method. Luminance and maintenance improvement was achieved by the electron-beam annealing due to additional decomposition of $ZnS-Cu_{2}S$ solid solution and formation of centers of blue luminescence.

  • PDF