• Title/Summary/Keyword: Controlled-release product

Search Result 15, Processing Time 0.025 seconds

Overview of active packaging to maintain the quality of fresh food products - focusing on controlled release packaging (식품의 선도 유지를 위한 액티브 포장 연구 고찰 기능성 방출 조절 포장 중심)

  • Lee, Myung-Ho;Lee, Youn Suk
    • Food Science and Industry
    • /
    • v.50 no.2
    • /
    • pp.27-36
    • /
    • 2017
  • Today, the food packaging industry has a great interest in using active packaging to fresh food product as a solution for the future to positively provide its quality, safety and shelf life. Many researches have extensively studied functional packaging strategies in recently years. Controlled release packaging (CRP) is an innovative packaging technology in the packaging polymer matrix from which can active agents are delivered in a controlled way into the product. CRP technology is well-suited for controlling release of antimicrobial compounds and antioxidants to prevent food degradation reactions such as microbial growth and lipid oxidation. Advances in CRP technology allow food packaging manufacturers to challenge the development of better functional food packaging systems. This overview examines the most recent developments and technologies of active packaging for applying the food industry. The scope of this article has mainly been focused on controlled releasing systems.

A Ternary Polymeric Matrix System for Controlled Drug Delivery of Highly Soluble Drug with High Drug Loading : Diltiazem Hydrochloride (염산 딜티아젬의 방출을 제어하기 위한 삼중 폴리머 매트릭스 시스템)

  • Kim, Hyun-Jo;Fassihi, Reza
    • Journal of Pharmaceutical Investigation
    • /
    • v.31 no.1
    • /
    • pp.19-25
    • /
    • 2001
  • The purpose of this study was to use a ternary polymeric matrix system for high drug loading of a highly soluble drug for controlled release delivery. The controlled drug delivery of diltiazem HCl (solubility > 50% in water at $25^{\circ}C$) with high loading dose (the final loading dose of drug was 34%) from a ternary polymeric matrix (gelatin, pectin, HPMC) was successfully accomplished. This simple monolithic system with 240 mg drug loading provided near zero-order release over a 24 hour-period by which time the system was completely dissolved. The release kinetics of diltiazem HCl tablet with high loading dose from the designed ternary polymeric system was dependent on the ratios of HPMC : pectin binary mixture. The release rate increased as pectin : HPMC ratio were increased. Swelling behavior of the ternary system and the ionic interaction of formulation components with cationic diltiazem molecule appear to control drug diffusion and the release kinetics. Comparable release profiles between commercial product and the designed system were obtained. The binding study between gelatin with diltiazem HCl showed the presence of two binding sites for drug interaction with subsequent controlled diffusion upon swelling. This designed delivery system is easy to manufacture and drug release behavior is highly reproducible and offers advantages over the existing commercial product.

  • PDF

Design and Optimization of Solid Dispersed Osmotic Pump Tablets of Aceclofenac, A Better Approach to Treat Arthritis

  • Edavalath, Sudeesh;Rao, B. Prakash
    • Journal of Pharmaceutical Investigation
    • /
    • v.41 no.4
    • /
    • pp.217-225
    • /
    • 2011
  • The aim of this work was to prepare porous osmotic pump tablets for controlled delivery of Aceclofenac. Aceclofenac solid dispersion was prepared to improve the solubility by using the drug - carrier (Mannitol) ratio of 1:1. The osmotic pump tablets were prepared using the solid dispersed product of Aceclofenac. The formulation contains potassium chloride as osmotic agent, cellulose acetate as semipermeable membrane, poly ethylene glycol (PEG 4000) as pore former and sodium lauryl sulphate (SLS) as solubility enhancer. The formulations were designed by the general factors such as osmotic agent and pore former. All formulations were evaluated for various physical parameters and, the in vitro release studies were conducted as per USP. The drug release kinetic studies such as zero order, first order, and Higuchi and Korsmeyer peppas were determined and compared. All the formulations gave more controlled release compared to the marketed tablet studied. Numerical optimization techniques were applied to found out the best formulation by considering the parameter of in vitro drug release kinetics and dissolution profile standards. It was concluded that the porous osmotic pump tablets (F7) composed of Aceclofenac solid dispersion/Potassium chloride/Lactose/Sodium lauryl sulphate/Magnesium Stearate (400/40/95/10/5, mg/tab) and coating composition with Cellulose acetate/ PEG 4000 (60/40 %w/w) is the most satisfactory formulation. The porous osmotic pump tablets provide prolonged, controlled, and gastrointestinal environment-independent drug release.

Simulation Analysis of Part Release Algorithm under Dynamic Tool Allocation in SSMS (SSMS에서 동적 공구할당을 고려한 부품투입 알고리즘의 시뮬레이션 분석)

  • 이충수
    • Journal of the Korea Society for Simulation
    • /
    • v.8 no.1
    • /
    • pp.63-76
    • /
    • 1999
  • Recently in manufacturing environment, manufacturing order is characterized by unstable market demand, shorter product life cycle, a variety of product and shorter production lead time. In order to adapt this manufacturing order, flexible manufacturing systems(FMS) in manufacturing technology advances into the direction that machines become further versatile functionally and that tools are controlled by fast tool delivery device. Unlike conventional FMS to mainly focus on part flow, it is important to control tool flow in single-stage multimachine systems(SSMS), consisting of versatile machines and fast tool delivery device. This research is motivated by the thought that exact estimation of tool competition at part release in SSMS enhances the system performance. In this paper, in SSMS under dynamic tool allocation strategy to share tools among machines, we propose real-time part release and tool allocation algorithms which can apply real factory and which can improve system performance.

  • PDF

Antimicrobial Ceramic Hybrid Polyethylene Films with Chamomile Extracts for Feed Packaging

  • Lee, Hye Sun;Chang, Jeong Ho
    • Journal of the Korean Ceramic Society
    • /
    • v.54 no.3
    • /
    • pp.228-234
    • /
    • 2017
  • This work was achieved on the preparation of antimicrobial ceramic hybrid polyethylene films with natural chamomile extracts. The antimicrobial activity and various physicochemical properties of the prepared films were evaluated. Various natural products demonstrated antimicrobial activity. Among them, chamomile extracts showed strong activity and no cytotoxicity rather than that of the natural extracts. Porous ceramic materials were synthesized and demonstrated loading and controlled release of natural antimicrobial extracts. Furthermore, chamomile loaded ceramic hybrid films showed antimicrobial activity that was maintained for over 15 days.

Guideline for Bioequivalence Studies of Controlled Release Products (서방성 제제의 생물학적동등성시험을 위한 가이드라인)

  • Seo, Hyun-Ok;Kim, So-Hee;Ahn, Mee-Ryung;Ahn, Choong-Yul;Park, Hye-Jin;Oh, Eun-Kyung;Lee, Eun-Ju;Kim, Bo-Yeon;Kim, Min-Jeong;Woo, Na-Ry;Seo, Hee-Won;Chung, Soo-Youn
    • Journal of Pharmaceutical Investigation
    • /
    • v.40 no.1
    • /
    • pp.63-66
    • /
    • 2010
  • The "Guidance Document for Bioequivalence Study" was revised for adding to bioequivalence studies of controlled-release products after meal(Korea Food & Drug Administration Notification #2008-22, 2008.5.7). The bioequivalence study design for controlled-release products is $2{\times}2$ crossover under fast and fed condition in respect. For studies of controlled-release products under fed study, the same high-fat diet should be taken within 20 minutes in at least a 10-hour fasting state. The drug products should be administered 30 minutes after the meal started. A high-fat(more than 35 percent of total caloric content of the meal) and high-calorie(over 900 calories) meal is recommended as a test meal for fed BE studies.

SSMS에서 동적 공구할당을 고려한 부품투입 알고리즘의 시뮬레이션 분석

  • 이충수
    • Proceedings of the Korea Society for Simulation Conference
    • /
    • 1999.04a
    • /
    • pp.60-64
    • /
    • 1999
  • Recently in manufacturing environment, manufacturing order is characterized by unstable market demand, shorter product life cycle, a variety of product and shorter production lead time. In order to adapt this manufacturing order, flexible manufacturing system(FMS) in manufacturing technology advances into the direction that machines become further versatile functionally and that tools are controlled by fast tool delivery device. Unlike conventional FMS to mainly focus on part flow, it is important to control tool flow in single-stage multimachine systems(SSMS), consisting of versatile machines and fast tool delivery device. In this paper, in SSMS under dynamic tool allocation strategy to share tools among machines, we propose real-time part release and tool allocation algorithms which can apply real factory and which can improve system performance.

  • PDF

Formulation and Pharmacokinetic Evaluation of Sustained Release Preparation Containing Clebopride Malate (말산클레보프리드 서방성 제제의 제조 및 약물동태학적 평가)

  • Ryou, Hae-Won;Lee, Joo-Han;Chi, Yong-Ha;Hahn, Yang-Hee;Tan, Hyun-Kwang;Lee, Kyu-Heung;Kim, Sang-Lin;Jeon, Seung-Yoon;Choi, Young-Wook
    • Journal of Pharmaceutical Investigation
    • /
    • v.30 no.3
    • /
    • pp.179-189
    • /
    • 2000
  • Clebopride malate(Cm) is a new benzamide drug which has a potent central antidopaminergic activity possessing antiemetic and anxiolytic properties. A purpose of this study was to assess the feasibility of formulating sustained release preparation by dispersing a drug in hydrophilic polymeric matrices and double layered tablets(DLT), using HPMC, carbopol, PEO, PVP/VA and other polymers as a rate controlling barrier. The matrix and DLT showed optimum dissolution pattern up to 8 hours and the contents of polymer were optimized at 30% level in this preparation. After an oral administration in beagle dog, Cm concentration was determined by use of GC-ECD and pharmacokinetic parameters were calculated by Vallner's method. The AUC of DLT showed similar results and the duration of action was increased 55% compared to that of regular release dosage form. The calculated absorption rate effectiveness(ARE) and controlled release effectiveness(CRE) for DLT increased 50% compared to that of matrix, the overall effectiveness(E) of this product appears to be about 70%. in vivo effectiveness test, DLT showed significant differences from control on antiemetic action of Cm. In consequence, it was possible to conclude that double layered tablet might be a good candidate for the sustained release dosage forms.

  • PDF

Parenteral Formulations Based on Albumin Particulate Technology

  • Lee, Hong-Hwa;Lee, Min-Jung;Heo, Sun-Ju;Sah, Hong-Kee
    • Journal of Pharmaceutical Investigation
    • /
    • v.40 no.spc
    • /
    • pp.83-95
    • /
    • 2010
  • Over the years, nanoparticle drug delivery systems have demonstrated versatile potentials in biological, medical and pharmaceutical applications. In the pharmaceutical industry nanotechnology research has mainly focused on providing controlled drug release, targeting their delivery to specific organs, and developing parenteral formulations for poorly water soluble drugs to improve their bioavailability. Achievement in polymer industry has generated numerous polymers applicable to designing nanoparticles. From viewpoints of product development, a nanocarrier material should meet requirements for biodegradability, biocompatibility, availability, and regulatory approval crieteria. Albumin is indeed a material that fulfills such requirements. Also, the commercialization of a first albumin-bound paclitaxel nanoparticle product (Abraxane$^{TM}$) has sparked renewed interests in the application of albumin in the development of nanoparticle formulations. This paper reviews the intrinsic properties of albumin, its suitability as a nanocarrier material, and albumin-based parenteral formulation approaches. Particularly discussed in detail are albumin-based particulate injectables such as Abraxane$^{TM}$. Information on key roles of albumin in the nab$^{TM}$ technology and representative manufacturing processes of albumin particulate products are provided. It is likely that albumin-based particulate technology would extend its applications in delivering drugs, polypeptides, proteins, vaccines, nucleic acids, and genes.

BCNU Release Behaviour from BCNU/PLGA Wafer Prepared by Vacuum Drying Method (진공 건조법에 의해 제조된 BCNU/PLGA웨이퍼의 BCNU 방출거동)

  • Park, Jung-Soo;Shin, Joon-Hyun;Lee, Doo-Hee;Rhee, John-M.;Kim, Moon-Suk;Lee, Hai-Bang;Khang, Gil-Son
    • Polymer(Korea)
    • /
    • v.31 no.3
    • /
    • pp.201-205
    • /
    • 2007
  • Biodegradable polymers such as polylactide, polyglycolide and poly (lactide- co-glycolide) (PLGA) have been extensively investigated because of easily controlled drug release rate, completely degradable materials without the toxic by-product, and good biocompatibility. But, according to the bulk erosion property of PLGA in vitro test, it had the disadvantage that first-order release reduced releasing amount slowly after excessive initial burst. In this study we used PLGA powder obtained through recrystallization to revise bulk erosion property of PLGA. The PLGA used in this study was prepared by vacuum drying method and to estimate release profiles of BCNU loaded PLGA wafer. We also evaluated the release profile of drug with the water soluble additive. It was found that the drug loaded PLGA recrystallized by vacuum drying method exhibited the initial burst and the constant rate of drug release compared to that prepared by a conventional method.