• Title/Summary/Keyword: Controlled low strength material(CLSM)

Search Result 52, Processing Time 0.024 seconds

A Study on the pH Reduction of Controlled Low Strength Material with Coal Ash (석탄회를 활용한 CLSM의 pH 저감에 관한 연구)

  • Kim, Youngil;Jee, Sunghyun;Chun, Byungsik
    • Journal of the Korean GEO-environmental Society
    • /
    • v.11 no.9
    • /
    • pp.39-45
    • /
    • 2010
  • Controlled low strength material(CLSM) is produced by mixing portland cement, fine aggregates, water and chemical admixtures. Sand is the most commonly used as the fine aggregates in the conventional CLSM. It is getting more and more difficult to obtain sand in Korea so it is required that the alternative materials be developed as the replacement of sand. Since the engineering characteristics of coal ash are similar to the sand, it becomes necessary to examine the application of the coal ash as the alternative material for CLSM and as the environment-friendly material. When the results meet the optimum pH level that plants can live, it can be expanded the scale of application of the study on the plant as the important field. This study was subjected to present the method to reduce the pH range of CLSM to a suitable condition that plants can survive. To verify this method, the care of neutralization was conducted by immersing the specimen to Ammonium monohydrogen phosphate. Before curing and neutralization, the maximum pH of developmental CLSM is approximately 11. However, the pH value of developmental CLSM has under 9.5 after peaceful curing and neutralization management.

Optimal Mixture Contents of Accelerated Flowable Backfill Materials Using Surplus Soil for Underground Power Utilities (굴착잔토를 재활용한 지중전력구조물 급결성 유동화 뒷채움재의 최적배합비)

  • Cheon, Seon-Ho;Jeong, Sang-Seom;Lee, Dae-Soo;Cho, Hwa-Kyung
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.10a
    • /
    • pp.395-404
    • /
    • 2005
  • This study is to evaluate the physical and mechanical characteristics of flowable backfill and search for the optimal mixture contents of it used for constructing underground power utilities. flowable backfill is known as soil-cement slurry, void fill, and controlled low-strength material(CLSM). The benefits of CLSM include reduced equipment costs, faster construction, re-excavation in the future, and the ability to place material in confined spaces such as narrow parts nearly impossible for compaction or perimeter of underground power cables. The flowable slurry mixture made with 9 types of soil and 6 types of accelerated mixtures in the laboratory were evaluated for bleeding, flowability, heat resistance, and unconfined compressive strength to meet the aim values of this study.

  • PDF

A Study on the Engineering Characteristics of CLSM (유동성 채움재의 공학적 특성 연구)

  • Jung, Min-Ji;Jeon, Byeong-Won;Kim, Byeong-Jun
    • Journal of the Korean Geotechnical Society
    • /
    • v.40 no.2
    • /
    • pp.19-28
    • /
    • 2024
  • This study explores the long-term decline in the uniaxial compressive strength of Controlled Low Strength Material (CLSM) by preparing a sample with a 1:1 mixing ratio of CLSM and water. Uniaxial compressive strength tests were conducted after 7 and 28 days of curing. The results revealed that the compressive strength at 28 days was reduced by a factor of 2.85 compared to that at 7 days. Additionally, when expansion was introduced under the same mixing conditions, there was a significant reduction in compressive strength. Point load strength tests based on 7 and 28 days of curing indicated a disparity of 29.27 to 58.76 and 48.19 to 95.13 times, respectively, between the point load strength and the uniaxial compressive strength at 7 days. The differences observed in the findings of this study compared to previous studies may be attributed to variations in the precision of the test method and the sample production process. Therefore, it is essential to establish clear testing methods to accurately evaluate CLSM.

Evaluation of Early-age Properties of Controlled Low Strength Material Using Non-destructive Testing (비파괴 기법을 이용한 유동성 채움재의 초기경화특성 평가)

  • Kim, Dong-Ju;Kim, Sang-Cheol;Han, WooJin;Lee, Jong-Sub;Byun, Yong-Hoon
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.62 no.2
    • /
    • pp.31-38
    • /
    • 2020
  • Controlled Low Strength Material (CLSM) has high fluidity and self-compaction characteristics. CLSM is mainly used for backfilling the excavated road. Early-age properties of CLSM should be characterized for fast restoration of the road. In this study, shear wave monitoring and Vicat needle test are performed to investigate the early-age properties of CLSM depending on the setting time. CLSM consists of CSA cement, fly ash, silt and sand, accelerator, and water. Five fly ashes with different chemical properties are used for CLSM samples. The penetration of CLSM along setting time is obtained through the Vicat needle test. A pair of bender elements are placed in a mold for shear wave measurement, and the change in shear waves with the setting time is monitored. The experimental results show that, regardless of the type of fly ash, the penetration depth decreases and the shear wave velocity increases with the setting time. Depending on the type of fly ash, initial and final times and shear wave velocity change. After testing, the correlation between penetration and shear wave velocity is obtained with high coefficient of determination. The shear wave measurement technique using the bender element can be used to identify early-age properties.

Compressive Strength of CLSM Containing Bottom ash (Bottom ash를 사용한 저강도 고유동 충전재의 강도특성)

  • Won, Jong-Pil;Lee, Yong-Su
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2001.10a
    • /
    • pp.142-146
    • /
    • 2001
  • This research was undertaken on the use of bottom ash as a fine aggregate in Controlled. Low-strength Material(CLSM). The mixtures contained constant fly ash. And four different level of bottom ash with fly ash contents, 25%, 50%, 75%, 100% are investigated. Mixture proportions were developed for producing CLSM at three 28-day strength levels: removal with tools (less than $7kgf/cm^{2}$), removal by mechanical means (less than $200kgf/cm^{2}$), and removal with power equipment (less than $83kgf/cm^{2}$). To obtain these strengths, cement contents of 30, 60, and $120kg/cm^{3}$ were utilized. The compressive strength properties support the concept that by-product bottom ash can be successfully used in CLSM.

  • PDF

Experimental Study on Evaluating Early-age Strength and Stiffness Characteristics of Controlled Low Strength Material (유동성 채움재의 조기 강도 및 강성 특성 평가를 위한 실험적 연구)

  • Son, Dong Geon;Jeong, In Up;Kim, Dong-Ju;Byun, Yong-Hoon
    • Journal of the Korean Geosynthetics Society
    • /
    • v.20 no.4
    • /
    • pp.133-140
    • /
    • 2021
  • There are few attempts to estimate the strength and stiffness of controlled low strength material (CLSM) using existing field-testing methods. The objective of this study is to evaluate the resilient modulus of CLSM by using the Light Weight Deflectometer (LWD) and investigate the relationships between the resilient modulus from LWD and the unconfined compressive strength (UCS) and secant modulus of elasticity from unconfined compressive test. Five CLSMs with different mix designs are used to evaluate the flowability and the stiffening of the CLSM in the flow and Vicat needle tests, respectively. To evaluate the early strength and stiffness characteristics, unconfined compressive tests are performed using the CLSM specimens cured for 1 and 7 days. LWD tests are carried out to estimate the resilient modulus of the CLSM specimens. The experimental results show that for the curing time of 1 day, the UCS and secant modulus of elasticity generally increase with the fast setting mortar content (FC). The CLSM specimen with the highest FC shows the significant increase in the UCS and secant modulus of elasticity along the curing time. Overall, the resilient modulus for the curing time of 1 day increases with the FC, while that for the curing time of 7days decreases with an increase in the FC. From the results, the linear relationships between the resilient modulus and UCS and secant modulus of elasticity are established.

Densification Method of Controlled Low Strength Materials Made with Coal Ashes (수중 가압식 매립방법을 이용한 석탄회 저강도고유동화재의 고밀도화 특성)

  • Kim, Juhyong;Cho, Samdeok;Kim, Ukgie;Kong, Jinyoung;Jung, Hyuksang;Chun, Byungsik
    • Journal of the Korean GEO-environmental Society
    • /
    • v.14 no.2
    • /
    • pp.5-11
    • /
    • 2013
  • This study introduces a densification technique of controlled low strength materials (CLSM) made with coal ashes by pump discharge pressure. Based on a small-scale laboratory test results, unit weight of CLSM around discharge pipe is greater than that of relatively some distant area from discharge pipe. It is also found that densification of CLSM depends on not only mixture rate of pond ash but also fly ash and location of discharge pipe.

Feasibility Study on CLSM for Emergency Recovery of Landfill Bottom Ash (매립장 석탄회의 긴급복구용 CLSM으로 활용 가능성)

  • Ha-Seog Kim;Ki-Suk Kim
    • Land and Housing Review
    • /
    • v.14 no.2
    • /
    • pp.137-145
    • /
    • 2023
  • In this study, the characteristics such as flowability, bleeding rate, and strength of the CLSM (Controlled Low Strength Material) according to physical properties such as particle size distribution and particulate content of the pond ash were investigated as part of the practical development of technology for CLSM using pond ash. As a result of analyzing the properties of the collected pond ash, it was found that the density and particle size distribution characteristics were different. And that the bleeding ratio did not satisfy the standard in the case of the specimen with a large amount of fly ash and a lot of addition of mixing water. As a result of the compressive strength test, the strength development of 0.5 MPa or more for four hours was found to be satisfactory for the specimens using hemihydrate gypsum with a unit binder amount of 200 or more, and the remaining gypsum showed poor strength development. Although it was determined that landfill coal ash can be used as a CLSM material, it is necessary to identify and apply the physical and chemical characteristics of coal ash buried in the ash treatment plant of each power generation company.

Development of on-site application system for CLSM(Controlled Low Strength Material) for ground restoration which can secure Traffic Opening strength within 4 hours by utilizing industrial by-products from thermal power plants and steel mills (화력발전소와 제철소 발생 산업부산물을 활용하여 4시간 이내 개방강도 확보가 가능한 지반복원용 고유동성 채움재 현장적용 시스템 개발)

Characterization of Controlled Low-Strength Materials Utilizing CO2-Solidified CFBC Coal Ash (CO2 고정화된 CFBC 석탄재를 활용한 저강도 고유동 채움재의 특성평가)

  • Cho, Yong-Kwang;Nam, Seong-Young;Lee, Yong-Mu;Kim, Chun-Sik;Seo, Shin-Seok;Jo, Sung-Hyun;Lee, Hyoung-Woo;Ahn, Ji-Whan
    • Journal of Environmental Science International
    • /
    • v.26 no.11
    • /
    • pp.1267-1274
    • /
    • 2017
  • A Controlled Low-Strength Materials (CLSM) is suitable for mine backfilling because it does not require compaction owing to it high fluidity and can be installed quickly. Therefore, a CLSM utilizing $CO_2$-solidified Circulating Fluidzed Bed Combustion (CFBC) coal ash was developed and it's properties were investigated, since. $CO_2$-solidification of CFBC coal ash can inhibit exudation of heavy metals. The chemical composition and specific surface area of Pulverized coal Combustion fly ash and CFBC fly ash were analyzed. The water ratio, compressive strength and length change ratio of CLSM were confirmed. The water ratios differed with the specific surface area of the CLSM. It was confirmed that the porosity of CLSM affected its compressive strength and length change ratio.