• 제목/요약/키워드: Controlled cooling

검색결과 388건 처리시간 0.025초

HVDC 시스템의 수냉식 냉각 시스템 (Water-Cooling System of HVDC System)

  • 김찬기
    • 전력전자학회논문지
    • /
    • 제4권3호
    • /
    • pp.257-267
    • /
    • 1999
  • 본 논문은 대용량 컨버터의 수냉식 방열 시스템에 관한 내용을 담고 있다. 본 논문은 수냉식 방열 시스템의 이론적 근거와 모델링을 제시하고 전력용 반도체(싸이리스터)의 열량 계산을 수학적인 모델링에 근거하여 제시하였으며 실제로 우리나라에 설치되어 있는 제주-해남 HVDC 시스템에 적용하여 타당성을 검증하였다.

  • PDF

Effects of Local Cooling on Heat Strain in the Hot Environment -On the Trunk Region-

  • Hwang, Kyoung-Sook;Choi, Jeong-Wha;Lee, Kyung-Suk
    • 한국환경보건학회지
    • /
    • 제33권3호
    • /
    • pp.211-216
    • /
    • 2007
  • This study was to determine the effect of cooling part of the trunk without harm for the health. The results provide basic data for the development of clothing which could increase work efficiency and reduce body strain in hot environment. Eight males took part in the study. The experiment was conducted in a climate-chamber controlled with $37{\pm}1^{\circ}C,\;50{\pm}5%R.H$. The trunk was divided into six areas to be cooled: head, neck, chest, abdomen, the upper back, the lower back. According to preceding studies, permissible safety cooling limits of skin temperature, of each part of the trunk for four hours cooling were $25^{\circ}C$ on the head, $20^{\circ}C$ on the neck, $27^{\circ}C$ on the chest, $25^{\circ}C$ on the abdomen, $20^{\circ}C$ on the upper back, $20^{\circ}C$ on the lower back. So cooling temperatures of each region set up temperatures above mentioned. In conclusion, the head, the neck and the upper back cooling could reduce sweating amount, rectal temperature and heart rates and reduce the heat stress of workers exposing in the hot environment by decreased subjective sensations of heat and comfort. Thus, it was concluded that effectiveness of cooling among the trunk was best on the head and the neck.

Thermal Conductivity Analysis of Amorphous Silicon Formed by Natural Cooling: A Molecular-dynamics Study

  • Lee, Byoung Min
    • 한국세라믹학회지
    • /
    • 제53권3호
    • /
    • pp.295-300
    • /
    • 2016
  • To investigate the thermal conductivity and the structural properties of naturally cooled excimer-laser annealed Si, molecular-dynamics (MD) simulations have been performed. The thermal conductivity of crystalline Si (c-Si) was measured by direct method at 1000 K. Steady-state heat flow was measured using a stationary temperature profile; significant deviations from Fourier's law were not observed. Reliable processes for measuring the thermal conductivity of c-Si were presented. A natural cooling process to admit heat flow from molten Si (l-Si) to c-Si was performed using an MD cell with a size of $48.9{\times}48.9{\times}97.8{\AA}^3$. During the cooling process, the temperature of the bottom $10{\AA}$ of the MD cell was controlled at 300 K. The results suggest that the natural cooling system described the static structural property of amorphous Si (a-Si) well.

화염법으로 제조된 TiO2 나노분말의 결정구조에 미치는 화염가스 유량의 영향 (Effect of the Flow Rate of Flame Gases on the Crystal Structure of TiO2 Nanopowder Synthesized by Flame Method)

  • 지현석;안재평;허무영;박종구
    • 한국분말재료학회지
    • /
    • 제10권6호
    • /
    • pp.448-455
    • /
    • 2003
  • $TiO_2$ nanopowder has been synthesized by means of the flame method using a precursor of titanium tetraisopropoxide (TTIP, Ti$(OC_3H_7)_4)$. In order to clarify the effect of cooling rate of hot flame on the formation of $TiO_2$ crystalline phases, the flame was controlled by varying the mixing ratio and the flow rate of gases. Anatase phase was predominantly synthesized under the condition having the steep cooling gradient in flame, while a slow cooling gradient enabled to form almost rutile $TiO_2$ nanopowder of above 95%.

효과적인 패널 냉각을 위한 대향류형 냉각장치의 개발 (A Development of Counter Flow Type of Cooling System for Effective Panel Cooling)

  • 이중순
    • 한국산학기술학회논문지
    • /
    • 제11권3호
    • /
    • pp.802-807
    • /
    • 2010
  • 산업용 컴퓨터를 포한한 다양한 형태의 공작기계나 자동화 시스템의 배전반이나 제어 패널을 고효율적으로 냉각시킬 수 있는 시스템은 매우 중요한 요소이다. 따라서 이러한 냉각장치는 산업용 로봇, 수치제어 공작기계 등과 같은, 다양한 산업용 시스템에 널리 사용되고 있다. 본 연구에서는 패널 내부를 순환하는 공기를 강제적으로 유동시키는 냉각방식을 채택하여 효과적인 패널 냉각을 위한 대향류형 냉각장치를 개발하였다. 본 연구를 통하여 효과적인 냉각장치를 위한 핀 어셈블리를 개발하여 제어용 패널에 적용한 결과, 기존의 시스템에 비하여 냉각 성능과 열교환율이 개선된 결과를 확인할 수 있었다. 연구에 적용된 상용의 시스템에 비해 공기의 유동량은 약 20% 정도 증가하는 현상을 보였고, 열교환량은 약 2배 이상 증가하는 현상을 확인할 수 있었다.

연질 PE관을 이용한 여름딸기 부분냉방기술 개발 (Spot Cooling System Development for Ever-bearing Strawberry by Using Low Density Polyethylene Pipe)

  • 문종필;강금춘;권진경;이수장;이종남
    • 한국농공학회논문집
    • /
    • 제56권6호
    • /
    • pp.149-158
    • /
    • 2014
  • The effects of spot cooling on growing ever-bearing strawberry in hydroponic cultivation during summer by spot cooling system was estimated in plastic greenhouse located in Pyeongchang. The temperature of cooling water was controlled by heat pump and maintained at the range of $15{\sim}20^{\circ}C$. Cooling pipes were installed in root zone and very close to crown. Spot cooling effect was estimated by applying system in three cases which were cooling root zone, crown plus root zone, and crown only. White low density polyethylene pipe in nominal diameter of 16 mm was installed on crown spot, and Stainless steel flexible pipe in nominal diameter of 15A was installed in root zone. Crown and root zone cooling water circulation was continuously performed at flowrates of 300 ~ 600 L/hr all day long. Strawberry yields by test beds were surveyed from Aug. 1 to Sep. 30. The accumulated yield growth rate compared with a control bed of crown cooling bed was 25 % and that of crown plus root zone cooling bed was 25 % and that of root zone cooling bed was 20 %. The temperatures of root spot in root zone cooling was maintained at $18{\sim}23.0^{\circ}C$ and that of crown spot in crown cooling was maintained at $19{\sim}24^{\circ}C$. Also, the temperatures of root spot in crown plus root zone cooling bed was maintained at $17.0{\sim}22.0^{\circ}C$ and that of crown spot was maintained at $19{\sim}25^{\circ}C$.

Comparison of the Impact of an Optimized Ice Cooling Vest and a Paraffin Cooling Vest on Physiological and Perceptual Strain

  • zare, Mansoor;dehghan, Habibollah;yazdanirad, Saeid;khoshakhlagh, Amir hossein
    • Safety and Health at Work
    • /
    • 제10권2호
    • /
    • pp.219-223
    • /
    • 2019
  • Background: Ice cooling vests can cause tissue damage and have no flexibility. Therefore, these two undesirable properties of ice cooling vest were optimized, and the present study was aimed to compare the impact of the optimized ice cooling vest and a commercial paraffin cooling vest on physiological and perceptual strain under controlled conditions. Methods: For optimizing, hydrogel was used to increase the flexibility and a layer of the ethylene vinyl acetate foam was placed into the inside layer of packs to prevent tissue damage. Then, 15 men with an optimized ice cooling vest, with a commercial paraffin cooling vest, and without a cooling vest performed tests including exercise on a treadmill (speed of 2.8 km/hr and slope of %0) under hot ($40^{\circ}C$) and dry (40 %) condition for 60 min. The physiological strain index and skin temperature were measured every 5 and 15 minutes, respectively. The heat strain score index and perceptual strain index were also assessed every 15 minutes. Results: The mean values of the physiological and perceptual indices differed significantly between exercise with and without cooling vests (P < 0.05). However, the difference of the mean values of the indices except the value of the skin temperature during the exercises with the commercial paraffin cooling vest and the optimized ice cooling vest was not significant (P > 0.05). Conclusions: The optimized ice cooling vest was as effective as the commercial paraffin cooling vest to control the thermal strain. However, ice has a greater latent heat and less production cost.

B과 Cu가 포함된 고강도 저합금강의 연속냉각 변태와 미세조직 및 기계적 특성 (Continuous Cooling Transformation, Microstructure and Mechanical Properties of High-Strength Low-Alloy Steels Containing B and Cu)

  • 황병철
    • 한국재료학회지
    • /
    • 제23권9호
    • /
    • pp.525-530
    • /
    • 2013
  • This study investigated the continuous cooling transformation, microstructure, and mechanical properties of highstrength low-alloy steels containing B and Cu. Continuous cooling transformation diagrams under non-deformed and deformed conditions were constructed by means of dilatometry, metallographic methods, and hardness data. Based on the continuous cooling transformation behaviors, six kinds of steel specimens with different B and Cu contents were fabricated by a thermomechanical control process comprising controlled rolling and accelerated cooling. Then, tensile and Charpy impact tests were conducted to examine the correlation of the microstructure with mechanical properties. Deformation in the austenite region promoted the formation of quasi-polygonal ferrite and granular bainite with a significant increase in transformation start temperatures. The mechanical test results indicate that the B-added steel specimens had higher strength and lower upper-shelf energy than the B-free steel specimens without deterioration in low-temperature toughness because their microstructures were mostly composed of lower bainite and lath martensite with a small amount of degenerate upper bainite. On the other hand, the increase of Cu content from 0.5 wt.% to 1.5 wt.% noticeably increased yield and tensile strengths by 100 MPa without loss of ductility, which may be attributed to the enhanced solid solution hardening and precipitation hardening resulting from veryfine Cu precipitates formed during accelerated cooling.

열전소자를 이용한 BIPV 모듈의 냉각시스템 개발 (Cooling System Development of BIPV Module Using Thermoelectron)

  • 최정식;고재섭;정동화
    • 전기학회논문지
    • /
    • 제57권9호
    • /
    • pp.1555-1562
    • /
    • 2008
  • This paper presents a cooling system using thermoelectron for improving the output of BIPV module. The temperature characteristic in regard to improving the output of BIPV system has rarely been studied up to now but some researchers only presented the method using a ventilator. The cooling system efficiency of BIPV module applied to a ventilator mainly depends on the weather such as wind, insolation etc. Because the cooling system of BIPV module using a ventilator is so sensitive, that is being set off by wind speed at all time but is unable to operate in the NOCT(Nominal Operating Cell Temperature) which is able to make the maximum output. The paper presents the cooling system using thermoelectron so as to solve such problems. The temperature control of thermoelectron can be controlled independently in the outside environment because that is performed by micro-controller. The temperature control of thermoelectron, also, can be operated around NOCT through algorism of the temperature control. Therefore, outputs of the whole system increase and the efficiency rises. The paper demonstrates the validity of proposed method by comparing the data obtained through a experiment of the cooling method of BIPV using a ventilator and proposed thermoelectron.

TMCP 강의 용접열영향부 인성에 관한 연구

  • 신민태;윤중근;김희진
    • Journal of Welding and Joining
    • /
    • 제4권3호
    • /
    • pp.43-49
    • /
    • 1986
  • Weldability of the TMCP steel manufactured by controlled rolling followed by accelerated cooling process was investigated. For comparison, two other steel plates produced by different manufacturing processes were selected; normalized and controlled rolled. Tandem submerged arc welding with both side one run technique was carried out. The results of this study can be summarized as follows; TMCP steel having the lowest carbon equivalent shows the best combination of mechanical properties, not only in the base metal but also in the heat affected zone. In the HAZ, the accelerated colling effect imarted on the trengthis releved by the weld thermal cycles, and thus the strength of the welded joint decrease substantially accompanied with the fracture in the HAZ. On the other hand, not only the softening but the fine microstructure can preserve the high toughness of TMCP steel in the HAZ.

  • PDF