• 제목/요약/키워드: Controlled Light Environment

검색결과 130건 처리시간 0.04초

가압제어용 둥근 유입형 오리피스 특성 (Rounded Entry Orifice Characteristics for Pressurization Control)

  • 정용갑;권오성;장제선;신동순;한상엽
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2008년도 춘계학술대회논문집
    • /
    • pp.401-404
    • /
    • 2008
  • Pressurization system in a liquid-propellant launcher supplies the controlled gas into the ullage volume of propellant tanks to feed propellants to combustion chamber by pressurizing propellants stored in propellant tanks. The ullage part of propellant tank should be constantly pressurized to supply the propellants stored in propellant tanks to turbo-pump or combustion chamber by pressurant pressurization system. Pressurant used to pressurize propellants is generally stored in a series of tanks at cryogenic temperature and high preassure inside an oxidizer tank. The reason is to store the quantity of pressurant as much as possible and to make pressurant tanks as small as (i.e. as light as) possible. However for test convenience pressurant tank is located at STP (standard temperature and pressure) environment in this study. Orifices are widely adapted to several pressurization systems in liquid rocket propulsion systems. Discharge coefficients of orifices are essentially needed for the optimized design of pressurization system in liquid rocket propulsion system. For this study gaseous nitrogen was served as pressurant and rounded entry orifices were employed. The forty-two (42) rounded entry orifices (the radii of curvatures are 0.5 and 1.0) have been tested experimentally in the supersonic flow region. The discharge coefficients of rounded entry orifices with inside diameters ranging from about 1.4 to 5.0mm was measured with 0.95 ${\sim}$ 0.99.

  • PDF

자연채광용 Mini-dish 클러스터의 기본설계 및 시제품 제작에 관한 연구 (The Preliminary Design and Fabrication of a Daylighting Device with Mini-dish Cluster)

  • 한현주;김정태
    • KIEAE Journal
    • /
    • 제6권4호
    • /
    • pp.11-16
    • /
    • 2006
  • This work has carried out some preliminary studies for the utilization of a solar mini-dish system capable of concentrating solar rays to higher densities. A typical mini-dish system considered employs an array of solar mini-dishes where major components are light and compact. It consists of small mini-dishes, optical fiber bundles and diffusers at the end. Each mini-dish (typically has a 20 to 30 cm in diameter) is designed with a simple parabolic profile, concentrating sunlight (after the glass glazing cover to avoid dust deposition on the reflector and facilitate cleaning) onto a centrally-located small mirror which is placed on the bottom side of the transparent glass cover. The focused sunlight is reflected by the mirror surface onto a focal point where the receiving aperture of a homogenizer is located. Optical fibers are used to carry high-density solar rays to the other end where diffusers are mounted for indoor illumination. The proposed high density mini-dish system could make an efficient daylighting system as it excludes large moving parts and expandable if necessary. Each component of the system could be made from the off-the-shelf technology and thus, make the generic unit inexpensive to manufacture. Depending on spatial demand or characteristics, the amount of introducing daylight could be controlled. Preliminary tests have been carried out for a trial system to check any functional problems when in operation. Suggestions are also made to improve the design enhancing its performance and applicability.

최적 발전성능 도출을 위한 태양광모듈 추적방법에 관한 연구 (A Study on the Tracking Method for Solar Module to Derive Optimum Performance)

  • 김용진;이종수;정유근;김정태
    • KIEAE Journal
    • /
    • 제12권1호
    • /
    • pp.113-118
    • /
    • 2012
  • The photovoltaic is one of the most important sustainable technologies appliable to architectures. The power performance mainly depends on the installation conditions of them. This study aims to evaluate the power performance of photovoltaic system by the installation conditions, the tracking methods and reflecting mirrors. For the study, the Solar Pro computer simulations have been conducted on installation angles, solar azimuth and solar altitude. Also, the field mock-up tests are performed to of its application to verify the simulation results. Both the results of the experiment and the simulation have proved that the efficiency of 90-degree fixed angle method was higher than that of 30-degree fixed angle, the efficiency of altitude tracking was better than that of azimuth tracking method, and changing both the altitude and the azimuth together is more efficient rather than the shortened tracing way. In addition, the light-concentrating method in which the incidence angle of the sun is controlled by an adhered reflector has been analyzed to have better efficiency than the general method of tracing according to the orbit of the sun. Therefore, this thesis is expected to offer the basic data to set a more effective tracing-type of photovoltaic power generation system in the future. For this, more researches are to be conducted hereafter on a high efficiency drive motor and the establishment of an economic system.

Facile Synthesis of Silver Chloride Nanocubes and Their Derivatives

  • Kim, Seung-Wook;Chung, Haeg-Eun;Kwon, Jong-Hwa;Yoon, Ho-Gyu;Kim, Woong
    • Bulletin of the Korean Chemical Society
    • /
    • 제31권10호
    • /
    • pp.2918-2922
    • /
    • 2010
  • We demonstrate a facile route to synthesize silver chloride nanocubes and derivative nanomaterials. For the synthesis of silver chloride nanocubes, silver nitrate and hydrochloric acid were used as precursors in ethylene glycol, and poly (vinyl pyrrolidone) as a surfactant. Molar ratio of the two precursors greatly influenced the morphology and composition of the final products. As-synthesized silver chloride nanocubes showed size-dependent optical properties in the visible region of light, which is likely due to a small amount of silver clusters formed on the surface of silver chloride nanocubes. Moreover, we show for the first time that simple reduction of silver chloride nanocubes with different reducing reagents leads to the formation of delicate nanostructures such as cube-shaped silver-nanoparticle aggregates, and silver chloride nanocubes with truncated corners and with silver-nanograin decorated corners. Additionally, we quantitatively investigated for the first time the evolution of silver chloride nanocubes to silver chloride nanocubes decorated with silver nanoparticles upon exposure to e-beam. Our novel and facile synthesis of silver chloride related nanoparticles with delicately controlled morphologies could be an important basis for fabricating efficient photocatalysts and antibacterial materials.

Bluetooth 무선 통신 기능을 이용한 LED 조명시스템 설계 (Design of LED Lighting System using Bluetooth Wireless Communcation)

  • 김혜명;양우석;조영식;박대희
    • 조명전기설비학회논문지
    • /
    • 제29권2호
    • /
    • pp.1-7
    • /
    • 2015
  • The Light Emitting Diode(LED) lighting control system proposed in this thesis is made up of a sensor module, a microcontroller, Bluetooth wireless communication, LED Driver, and LED downlight. The sensor module, comprised of an infrared sensor, an illumination sensor, and a temperature sensor, was designed to one Printed Circuit board(PCB). The system is able to identify the environment information collected by the sensor, and make it possible to control lighting automatically and manually through sensors. In addition, depending on users' conditions, a color temperature can be controlled. CS-1000, a spectroradiometer, was employed to measure the changing values of a color temperature in 8 steps. According to a test, it was found that it was possible to change a color temperature from 3187K of Warm White LED to 5598K of Cool White LED. The Bluetooth based wireless communication technique makes it possible to control more lighting devices than other wireless communication techniques does.

터널 입구에서의 블랙홀 현상 완화를 위한 카메라 기반의 전면유리 투과율 제어 방법 (A Windshield Transparency Control Method Using an Automobile Camera for Alleviating Black-Hole Phenomenon at the Tunnel Entrance)

  • 이중현;이동욱
    • 전기학회논문지
    • /
    • 제65권8호
    • /
    • pp.1392-1399
    • /
    • 2016
  • Blackout effect occurs when a driver misadapts to the changed lighting conditions upon entering a tunnel. This could lead to a decrease in visibility especially in the daylight, depending on the difference in the degree of brightness between inside and outside the tunnel. To alleviate such a problem, we decrease windshield transparency before the driver arrives at the tunnel entrance. Controlled amount of light inside the car can allow the drivers to adjust to the dark prior to entering. The windshield transparency coefficient is to be determined by the arrival time at the tunnel and difference in the level of brightness between inside and outside the tunnel. Navigation, road sign detection, and tunnel entrance detection provide the arrival time. We also designed an opto-electronic conversion function to estimate the level of brightness. The black-hole phenomenon alleviation method is verified by field experiments using an automobile camera and a navigation. The result shows that the adjusted windshield transparency is able to provide an environment with a comfortable level of brightness with which the drivers can enter tunnels without the visibility problem.

화이버 가스 센서 제작 및 NOx 가스 검출 특성 분석 (Fabrication of Fiber Gas Sensor and Analysis of NOx Gas Detection Characteristics)

  • 손주형;김현수;윤영기;장경욱
    • 한국전기전자재료학회논문지
    • /
    • 제32권5호
    • /
    • pp.432-436
    • /
    • 2019
  • In this study, we produced a light, flexible, wearable gas sensor by depositing MWCNTs (Multi-walled Carbon Nanotubes) into nylon. MWCNTs are widely used as a gas sensor material due to their excellent mechanical, electrical and physical characteristics. We produced a gas sensor to detect NOx gases by depositing nylon yarn in a MWCNT solution. The MWCNT solution was made by mixing 3 mg MWCNT in 5 ml of ethanol. Nylon yarn was placed in the manufactured solution and ultrasonic waves were applied using an ultrasonicator for 3 h, resulting in MCWNT deposition. The MWCNT-deposited nylon yarn was dried at room temperature for 24 h. The MWCNT-thin-film-coated nylon yarn was masked 1 mm apart, and gold was then deposited on the masked nylon yarn to create the gas sensor. The sensor then was installed in a chamber with a controlled atmospheric environment and exposed to NOx gas. The changing signal from the sensor was amplified to analyze its gas detection characteristics.

Preference for Heated Substrate in Captive River Cooters (Pseudemys concinna): A Potential Use for the Control of Invasive Populations

  • Kang, Hakyung;Borzee, Amael;Chuang, Ming-Feng;Jang, Yikweon
    • Animal Systematics, Evolution and Diversity
    • /
    • 제37권1호
    • /
    • pp.9-14
    • /
    • 2021
  • Invasive species threaten global biodiversity as well as human livelihood and much of the global lands are vulnerable to these threats. Numerous freshwater turtles from the northern hemisphere have been introduced in East Asian countries, including the Republic of Korea. Knowing turtle's behavioral ecology is valuable to manage introduced populations and a distinctive behavior is basking for behavioral thermoregulation. To understand the possibility of using basking to enhance trapping, we tested thermotaxis in the river cooter (Pseudemys concinna). Turtles were placed in an aquarium containing heated and non-heated mats under controlled water and air temperature, air humidity and light. We found that P. concinna stayed significantly longer on heated mats than on unheated control mats in 11 out of 18 trials, demonstrating that heat source is a potential attractant for P. concinna. We recommend the use of heat source to bait traps used for population control of invasive freshwater turtles.

Review, Assessment, and Learning Lesson on How to Design a Spectroelectrochemical Experiment for the Molten Salt System

  • Killinger, Dimitris;Phongikaroon, Supathorn
    • 방사성폐기물학회지
    • /
    • 제20권2호
    • /
    • pp.209-229
    • /
    • 2022
  • This work provided a review of three techniques-(1) spectrochemical, (2) electrochemical, and (3) spectroelectrochemical-for molten salt medias. A spectroelectrochemical system was designed by utilizing this information. Here, we designed a spectroelectrochemical cell (SEC) and calibrated temperature controllers, and performed initial tests to explore the system's capability limit. There were several issues and a redesign of the cell was accomplished. The modification of the design allowed us to assemble, align the system with the light sources, and successfully transferred the setup inside a controlled environment. A preliminary run was executed to obtain transmission and absorption background of NaCl-CaCl2 salt at 600℃. It shows that the quartz cuvette has high transmittance effects across all wavelengths and there were lower transmittance effects at the lower wavelength in the molten salt media. Despite a successful initial run, the quartz vessel was mated to the inner cavity of the SEC body. Moreover, there was shearing in the patch cord which resulted in damage to the fiber optic cable, deterioration of the SEC, corrosion in the connection of the cell body, and fiber optic damage. The next generation of the SEC should attach a high temperature fiber optic patch cords without introducing internal mechanical stress to the patch cord body. In addition, MACOR should be used as the cell body materials to prevent corrosion of the surface and avoid the mating issue and a use of an adapter from a manufacturer that combines the free beam to a fiber optic cable should be incorporated in the future design.

Comparison of Environment, Growth, and Management Performance of the Standard Cut Chrysanthemum 'Jinba' in Conventional and Smart Farms

  • Roh, Yong Seung;Yoo, Yong Kweon
    • 인간식물환경학회지
    • /
    • 제23권6호
    • /
    • pp.655-665
    • /
    • 2020
  • Background and objective: This study was conducted to compare the cultivation environment, growth of cut flowers, and management performance of conventional farms and smart farms growing the standard cut chrysanthemum, 'Jinba'. Methods: Conventional and smart farms were selected, and facility information, cultivation environment, cut flower growth, and management performance were investigated. Results: The conventional and smart farms were located in Muan, Jeollanam-do, and conventional farming involved cultivating with soil culture in a plastic greenhouse, while the smart farm was cultivating with hydroponics in a plastic greenhouse. The conventional farm did not have sensors for environmental measurement such as light intensity and temperature and pH and EC sensors for fertigation, and all systems, including roof window, side window, thermal screen, and shading curtain, were operated manually. On the other hand, the smart farm was equipped with sensors for measuring the environment and nutrient solution, and was automatically controlled. The day and night mean temperatures, relative humidity, and solar radiation in the facilities of the conventional and the smart farm were managed similarly. But in the floral differentiation stage, the floral differentiation was delayed, as the night temperature of conventional farm was managed as low as 17.7℃ which was lower than smart farm. Accordingly, the harvest of cut flowers by the conventional farm was delayed to 35 days later than that of the smart farm. Also, soil moisture and EC of the conventional farm were unnecessarily kept higher than those of the smart farm in the early growth stage, and then were maintained relatively low during the period after floral differentiation, when a lot of water and nutrients were required. Therefore, growth of cut flower, cut flower length, number of leaves, flower diameter, and weight were poorer in the conventional farm than in the smart farm. In terms of management performance, yield and sales price were 10% and 38% higher for the smart farm than for the conventional farm, respectively. Also, the net income was 2,298 thousand won more for the smart farm than for the conventional farm. Conclusion: It was suggested that the improved growth of cut flowers and high management performance of the smart farm were due to precise environment management for growth by the automatic control and sensor.