• 제목/요약/키워드: Controlled Light Environment

Search Result 129, Processing Time 0.028 seconds

Transportation and Deposition of Modern Sediments in the Southern Yellow Sea

  • Shi, Xuefa;Chen, Zhihua;Cheng, Zhenbo;Cai, Deling;Bu, Wenrui;Wang, Kunshan;Wei, Jianwei;Yi, Hi-Il
    • Journal of the korean society of oceanography
    • /
    • v.39 no.1
    • /
    • pp.57-71
    • /
    • 2004
  • Based on the data obtained under the China-Korea joint project (1997-2001) and historic observations, the distribution, transportation and sedimentation of sediment in the southern Yellow Sea (SYS) are discussed, and the controversial formation mechanism of muddy sediments is also explored. The sediment transport trend analysis indicates that the net transport direction of sediment in the central SYS (a fine-grained sediment deposited area) points to $123.4^{\circ}E,\;35.1^{\circ}N$, which is a possible sedimentation center in the central SYS. The sediment transport pattern is verified by the distribution of total suspended matter (TSM) concentration and ${\delta}^{13}C$ values of particulate organic carbon (POC), the latter indicates that the bottom water plays a more important role than the surface water in transporting the terrigenous material to the central deep-water area of the SYS, and the Yellow Sea circulation is an important control factor for the sediment transport pattern in the SYS. The carbon isotope signals of organic matter in sediments indicate that the Shandong subaqueous delta has high sedimentation rate and the deposited sediments originate mainly from the modern Yellow River. The terrigenous sediments in deep-water area of the SYS originate mainly from the old Yellow River and the modern Yellow River, and only a small portion originates from the modern Yangtze River. The analytical results of TSM and stable carbon isotopes are further confirmed by another independent tracer of sediment source, polycyclic aromatic hydrocarbons (PAHs). Five light mineral provinces in the SYS can be identified and they indicate inhomogeneity in sources and sedimentary environment. The modern shelf sedimentary processes in the SYS are controlled by shelf dynamic factors. The muddy depositional systems are produced in the shelf low-energy environments, which are controlled by some meso-scale cyclonic eddies (cold eddies) in the central SYS and the area southwest of the Cheju Island. On the contrary, an anticyclonic muddy depositional system (warm eddy sediment) appears in the southeast of the SYS (the area northwest of the Cheju Island). In this study, we give the cyclonic and anticyclonic eddy sedimentation patterns.

Basic Research on Lighting Design for Learning Effect (학습효과 증진을 위한 조명설계에 대한 기초연구)

  • Lee, Boong-Joo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.4
    • /
    • pp.518-524
    • /
    • 2020
  • This study conducted basic research on an LED lighting design to improve the learning effect from brain wave analysis. The ideal environments of mathematics, language, and creative region can be different. Inside the space where the lighting environment can be experienced directly, the test subject consisted of common elements. Other lighting was blocked completely in controlled lighting conditions. The brain waves were analyzed according to the change in color temperature and illumination. The analyzer used was fabricated by EMOTIV Company. In the variable RGB LED light, the color of the light was measured, and the brain wave of each subject was determined. LED lights have variable color temperature (3000 [K], 4500 [K]. 250 [lux], 70% -350 [lux], 100% -500 [lux]). As research results, the highest concentration in a mathematics study was in the general condition of a high color temperature, in which the optimal condition was a 6000[K] color temperature and 350[lux] illumination. The optimal condition for a language study was a 4500[K] color temperature and 500[lux] illumination, and that of the creative study was 3000[K] color temperature and 500[lux] illumination. Overall, the possibility of emotional ability and concentrated learning efficiency can be improved by the LED lighting design with the color temperature and illumination.

Combined Foliar Spray of Boron, Calcium, and Silicon can Influence Quality and Shelf Life of Cherry Tomato in Modified Atmosphere Packaging (붕소, 칼슘, 규소의 복합 엽면시비가 방울토마토의 품질과 MAP 조건에서 저장성에 미치는 영향)

  • Islam, Mohammad Zahirul;Mele, Mahmuda Akter;Han, Su Jeong;Kim, Ju Young;Choi, In-Lee;Yoon, Jae Su;Yoon, Hyuk Sung;Park, Jong-Man;Kim, Il-Seop;Choi, Ki-Young;Kang, Ho- Min
    • Journal of Bio-Environment Control
    • /
    • v.26 no.4
    • /
    • pp.310-316
    • /
    • 2017
  • This study was analyzed the effects of boron (B), calcium (Ca), silicon (Si) on quality and shelf life of 'Unicorn' cherry tomato at the light red maturity-stage. The storage conditions were modified atmosphere packaging (MAP) by oxygen transmission rate (OTR) packaging film at $5^{\circ}C$, $11^{\circ}C$, and $24^{\circ}C$. Respiration and ethylene production were the lowest in B + Ca + Si -treated tomato fruits. The lowest fresh weight loss and the longest shelf life resulted from the B + Ca + Si treatment. And the firmness was enhanced by B + Ca + Si treatment at harvest time, and it was retained after storage at $5^{\circ}C$, $11^{\circ}C$, and $24^{\circ}C$. Significantly lower soluble solids, lycopene, and color development were found at B + Ca + Si-treated tomato fruits compared with control after storage. Moreover, the highest titratable acidity and vitamin C content were observed in B + Ca + Si-treated tomato fruits after storage. From the above results, it was concluded that B + Ca + Si combined treatment can delay the maturity of cherry tomato after harvesting, and retained the firmness and prolong the shelf life.

Development of Life Test Equipment with Real Time Monitoring System for Butterfly Valves

  • Lee, Gi-Chun;Choi, Byung-Oh;Lee, Young-Bum;Park, Jong-Won;Nam, Tae-Yeon;Song, Keun-Won
    • International Journal of Fluid Machinery and Systems
    • /
    • v.10 no.1
    • /
    • pp.40-46
    • /
    • 2017
  • Small valves including ball valves, gate valves and butterfly valves have been adopted in the fields of steam power generation, petrochemical industry, carriers, and oil tankers. Butterfly valves have normally been applied to fields where in narrow places installing the existing valves such as gate valves and ball valves have proven difficult due to the surrounding area and the heavier of these valves. Butterfly valves are used to control the mass flow of the piping system under low pressure by rotating the circular disk installed inside. The butterfly valve is benefitted by having simpler structure in which the flow is controlled by rotating the disc circular plate along the center axis, whereas the weight of the valve is light compared to the gate valve and ball valve above-mentioned, as there is no additional bracket supporting the valve body. The manufacturing company needs to acquire the performance and life test equipment, in the case of adopting the improving factors to detect leakage and damage on the seat of the valve disc. However, small companies, which are manufacturing the industrial valves, normally sell their products without the life test, which is the reliability test and environment test, because of financial and manpower problems. Furthermore, the failure mode analysis of the products failed in the field is likewise problematic as there is no system collecting the failure data on sites for analyzing the failures of valves. The analyzing and researching process is not arranged systematically because of the financial problem. Therefore this study firstly tried to obtain information about the failure data from the sites, analyzed the failure mode based on the field data collected from the customers, and then obtained field data using measuring equipment. Secondly, we designed and manufactured the performance and life test equipment which also have the real time monitoring system with the naked eye for the butterfly valves. The concept of this equipment can also be adopted by other valves, such as the ball valve, gate valve, and various others. It can be applied to variously sized valves, ranging from 25 mm to large sized valves exceeding 3000 mm. Finally, this study carries out the life test with square wave pressure, using performance and life test equipment. The performance found out that the failures from the real time monitoring system were good. The results of this study can be expanded to the other valves like ball valves, gate valves, and control valves to find out the failure mode using the real time monitoring system for durability and performance tests.

A Spectrophotometric Study on Color Differences between Various Light-Cured Composite Resins and Shade Guides (광중합형 복합레진과 shade guide의 색차에 관한 연구)

  • Lim, Kyung-Min;Lee, Min-Ho;Song, Kwang-Yeob
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.25 no.1
    • /
    • pp.13-22
    • /
    • 2009
  • The composite resin, due to its esthetic quality, is considered the material of choice for restoration of anterior teeth. To get a satisfactory result in the composite resin restorations, it is necessary to choose right shade. At present, most of the commercial composite resins are based on the Vita Lumin shade guides or shade guides that are provided by their company, but color differences among them might be expected even using the same shade in various materials. This study is to measure color differences between various light-cured composite resins and shade guides and to provide the clinicians with information which may aid in improved color match of esthetic restoration. Four kinds of light-cured composite resins (Gradia Direct (GD), Z250 (Z250), Clearfil AP-X (AP-X), Esthet X (E X)) and shade guides with A2 and A3 shade were used. Three specimens of each material and one specimen of each shade guide were made. Each composite resin was filled into the Teflon mold (1.35 mm depth, 8 mm diameter), followed by compression, polymerization and polishing with wet sandpaper. Shade guides were grinded with polishing stones and rubber points to a thickness of approximately 1.35 mm. Color characteristics were performed with a spectrophotometer(color i5, GretagMacbeth, USA). A computer-controlled spectrophotometer was used to determine CIELAB coordinates ($L^*$, $a^*$, $b^*$) of each specimen and shade guide. The CIELAB measurements made it possible to evaluate the amount of the color difference values (${\Delta}E^*ab$) between composite resins and shade guides. CIE standard D65 was used as the light source. The results were as follows : 1. Among the $L^*$, $a^*$, $b^*$ values of most of 4 kinds of composite resin specimens which are produced by same shade, there were significant differences(p<0.05). 2. Among all 4 kinds of composite resin specimens which are produced by same shade, there were color differences that is perceptible to human eye(${\Delta}E^*>3.3$). 3. Between most of composite resin specimens investigated and their corresponding shade guides, there were color differences that is perceptible to human eye(${\Delta}E^*>3.3$). 4. In the clinical environment, it is recommended that custom shade guides be made from resin material itself for better color matching. Shade guides supplied by manufacturers or Vita Lumin shade guide may not provide clinicians a accurate standard in matching color of composite resins, and there are perceptible color differences in most of products. Therefore, it is recommended that custom shade guides be made from resin material itself and used for better color matching.

Growth and Flowering of Campanula Species as Affected by Duration, Temperature, and Light Condition during Chilling Treatment (저온처리 기간, 온도 및 광 조건이 자생초롱꽃의 생육과 개화에 미치는 영향)

  • Lee, Young Mi;Park, Yoo Gyeong;Jeong, Byoung Ryong
    • FLOWER RESEARCH JOURNAL
    • /
    • v.19 no.1
    • /
    • pp.22-29
    • /
    • 2011
  • The experiment investigated effect of duration, temperature, and light condition during chilling treatment on growth and flowering of four Campanula species in a factorial experiment. Two parent species, Campanula punctata Lam. var. rubriflora Mak. and C. Punctata Lam., and their two $F_1$ hybrids, C. punctata Lam. ${\times}$ C. punctata Lam. var. rubriflora Mak. ('Jiknyeo') and C. punctata Lam. var. rubriflora Mak. ${\times}$ C. punctata Lam. ('Gyeonu'), were used. Plants were cultured in vitro for five weeks at $25^{\circ}C$ under about $75{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$ PPFD before being chilled at 4 or $25^{\circ}C$ for 3, 6, or 9 weeks under a darkened or lighted (about $10{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$ PPFD) condition. After chilling treatment, plants were transplanted to 10 cm pots filled with a commercial growing medium and were transferred to environment-controlled growth chambers and subsequently to a greenhouse to observe their reproductive growth. Growth of all species and flowering of a $F_1$ hybrid 'Jiknyeo' were affected by duration, temperature, and light condition during chilling treatment. The greatest growth and survival percentage were observed in C. punctata Lam. var. rubriflora Mak. The survival percentage was greater when plants were chilled in a lighted than darkened condition, whereas it decreased when plants were chilled more than six weeks in vitro. Among the four species tested, flowering was observed only in a $F_1$ hybrid 'Jiknyeo' with 62.5% flowering plants when it was chilled at $25^{\circ}C$ for three weeks under a lighted condition. Percent flowering plant was affected by duration, temperature, and light condition during chilling treatment. Three-week chilling at $4^{\circ}C$ under a darkened condition significantly reduced days to flowering. These results suggest that the low temperature requirement for flowering is not qualitative but quantitative in Campanula species. Further experiment with more number of plants is necessary to ascertain this conclusion.

Comparison of Measured and Calculated Carboxylation Rate, Electron Transfer Rate and Photosynthesis Rate Response to Different Light Intensity and Leaf Temperature in Semi-closed Greenhouse with Carbon Dioxide Fertilization for Tomato Cultivation (반밀폐형 온실 내에서 탄산가스 시비에 따른 광강도와 엽온에 반응한 토마토 잎의 최대 카복실화율, 전자전달율 및 광합성율 실측값과 모델링 방정식에 의한 예측값의 비교)

  • Choi, Eun-Young;Jeong, Young-Ae;An, Seung-Hyun;Jang, Dong-Cheol;Kim, Dae-Hyun;Lee, Dong-Soo;Kwon, Jin-Kyung;Woo, Young-Hoe
    • Journal of Bio-Environment Control
    • /
    • v.30 no.4
    • /
    • pp.401-409
    • /
    • 2021
  • This study aimed to estimate the photosynthetic capacity of tomato plants grown in a semi-closed greenhouse using temperature response models of plant photosynthesis by calculating the ribulose 1,5-bisphosphate carboxylase/oxygenase maximum carboxylation rate (Vcmax), maximum electron transport rate (Jmax), thermal breakdown (high-temperature inhibition), and leaf respiration to predict the optimal conditions of the CO2-controlled greenhouse, for maximizing the photosynthetic rate. Gas exchange measurements for the A-Ci curve response to CO2 level with different light intensities {PAR (Photosynthetically Active Radiation) 200µmol·m-2·s-1 to 1500µmol·m-2·s-1} and leaf temperatures (20℃ to 35℃) were conducted with a portable infrared gas analyzer system. Arrhenius function, net CO2 assimilation (An), thermal breakdown, and daylight leaf respiration (Rd) were also calculated using the modeling equation. Estimated Jmax, An, Arrhenius function value, and thermal breakdown decreased in response to increased leaf temperature (> 30℃), and the optimum leaf temperature for the estimated Jmax was 30℃. The CO2 saturation point of the fifth leaf from the apical region was reached at 600ppm for 200 and 400µmol·m-2·s-1 of PAR, at 800ppm for 600 and 800µmol·m-2·s-1 of PAR, at 1000ppm for 1000µmol of PAR, and at 1500ppm for 1200 and 1500µmol·m-2·s-1 of PAR levels. The results suggest that the optimal conditions of CO2 concentration can be determined, using the photosynthetic model equation, to improve the photosynthetic rates of fruit vegetables grown in greenhouses.

Growth Characteristics of Lettuce under Different Frequency of Pulse Lighting and RGB Ratio of LEDs (LED의 간헐조명과 RGB 비율에 따른 상추의 품종별 생육 특성)

  • Kim, Sungjin;Bok, Gwonjeong;Lee, Gongin;Park, Jongseok
    • Journal of Bio-Environment Control
    • /
    • v.26 no.2
    • /
    • pp.123-132
    • /
    • 2017
  • This study was aimed to investigate the effect of 1)irradiation with several different ratios using red, green, and blue LEDs and 2)various pulsed light irradiation with 50% duty ratio using red and blue LEDs on the growth and morphogenesis of three lettuce cultivars (Lactuca sativar L. cv. 'Jukchukmeon', 'Lolo Rosa', and 'Grand Rapid') in hydroponics culture system for 4 weeks after transplanting. Seeds were sown in rock-wool plug trays and they were placed in a culture room which was controlled at $23{\pm}1^{\circ}C/18{\pm}1^{\circ}C$ temperature and 50-60/70-85% for day and night, respectively, during cultivation period. Irradiated RGB ratios with LEDs were 6:3:1, 5:2.5:2.5, 3:3:4, 2:2:6, and 1:1:8 with $110{\pm}3{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$ PPFD on the surface of cultivation bed. The frequencies of pulsed lighting was 50, 100, 500, 1,000, 5,000, 10,000, 25,000Hz (20, 10, 0.1, 0.04 ms) with red and blue LEDs and 50% duty ratio. At the RGB ratio of 6:3:1, the average fresh weight of 'Jukchukmeon' was significantly higher than that of other RGB treatments, but no significant difference compared to the fluorescent treatment. The average fresh weight at 1:1:8 RGB ratio in 'Lolo Rosa' was significantly lower than that of other RGB treatments. Leaf number and fresh weight of 'Grand Rapid' were significantly lower in the control and 1:1:8 RGB treatments, compared to the other RGB treatments. As the ratio of blue light increased, leaf length decreased and leaf shape became round in three lettuces. Although there is little change in growth, it could not be found any tendency to affect the growth and morphogenesis of three lettuces caused by increasing or decreasing frequency of pulsed lighting with 50% duty ratio at the $72{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$ PPFD.

Effects of Seed Size and Weight on Growth of First-Year Seedling in Pinus koraiensis (잣나무종자(種子)의 크기와 무게가 묘목(苗木)의 초기생장(初期生長)에 미치는 영향(影響))

  • Chon, Sang Keun
    • Journal of Korean Society of Forest Science
    • /
    • v.31 no.1
    • /
    • pp.48-52
    • /
    • 1976
  • In order to investigate the effects of seed weight, size (length and thickness), and maturation period (early maturing seed or late maturing seed) on growth of first-year seedlings in Pinus koraiensis, pot cultivation experiment with seeds collected from Gangweon University Forest was carried out under relatively controlled environment condition. At the end of one growing season, not only fresh weight, length, diameter (at underside of cotyledon) and root length of seedlings, but also number and length of cotyledon were measured. Results are as follows; 1. Germination percentage is independent of weight and size of seeds, but it was influenced by maturation period, that is, late maturing seeds surpass early maturing one in germination percentage. 2. Germination percentage is affected by maturation period of seeds in 18.3% of contribution rate. 3. Each growth of first-year seedlings is influenced considerably by the differences of weight, length and thickness of seeds, that is, heavy and large seeds produce larger seedlings than do light and small seeds. Particularly, fresh weight, diameter, length of cotyledon are significantly affected by differences of seed weight and size (length and thickness) in 50-90% of contribution rate. 4. Differences of seed weight and thickness have a tendency to affect more on growth of first-year seedlings than do differences of seed length. 5. Seedlings from late maturing seeds are superior than those from early maturing one in fresh weight, diameter of seedlings and length of cotyledon, but it's influence is a little.

  • PDF

A Study on Manipulating Method of 3D Game in HMD Environment by using Eye Tracking (HMD(Head Mounted Display)에서 시선 추적을 통한 3차원 게임 조작 방법 연구)

  • Park, Kang-Ryoung;Lee, Eui-Chul
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.45 no.2
    • /
    • pp.49-64
    • /
    • 2008
  • Recently, many researches about making more comfortable input device based on gaze detection technology have been done in human computer interface. However, the system cost becomes high due to the complicated hardware and there is difficulty to use the gaze detection system due to the complicated user calibration procedure. In this paper, we propose a new gaze detection method based on the 2D analysis and a simple user calibration. Our method used a small USB (Universal Serial Bus) camera attached on a HMD (Head-Mounted Display), hot-mirror and IR (Infra-Red) light illuminator. Because the HMD is moved according to user's facial movement, we can implement the gaze detection system of which performance is not affected by facial movement. In addition, we apply our gaze detection system to 3D first person shooting game. From that, the gaze direction of game character is controlled by our gaze detection method and it can target the enemy character and shoot, which can increase the immersion and interest of game. Experimental results showed that the game and gaze detection system could be operated at real-time speed in one desktop computer and we could obtain the gaze detection accuracy of 0.88 degrees. In addition, we could know our gaze detection technology could replace the conventional mouse in the 3D first person shooting game.