• Title/Summary/Keyword: Controllable service rate

Search Result 5, Processing Time 0.024 seconds

ANALYSIS OF THE MMPP/G/1/K QUEUE WITH A MODIFIED STATE-DEPENDENT SERVICE RATE

  • Choi, Doo Il;Kim, Bokeun;Lim, Dae-Eun
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.18 no.4
    • /
    • pp.295-304
    • /
    • 2014
  • We analyze theMMPP/G/1/K queue with a modified state-dependent service rate. The service time of customers upon service initiation is changed if the number of customers in the system reaches a threshold. Then, the changed service time is continued until the system becomes empty completely, and this process is repeated. We analyze this system using an embedded Markov chain and a supplementary variable method, and present the queue length distributions at a customer's departure epochs and then at an arbitrary time.

Analysis of an M/G/1/K Queueing System with Queue-Length Dependent Service and Arrival Rates (시스템 내 고객 수에 따라 서비스율과 도착율을 조절하는 M/G/1/K 대기행렬의 분석)

  • Choi, Doo-Il;Lim, Dae-Eun
    • Journal of the Korea Society for Simulation
    • /
    • v.24 no.3
    • /
    • pp.27-35
    • /
    • 2015
  • We analyze an M/G/1/K queueing system with queue-length dependent service and arrival rates. There are a single server and a buffer with finite capacity K including a customer in service. The customers are served by a first-come-first-service basis. We put two thresholds $L_1$ and $L_2$($${\geq_-}L_1$$ ) on the buffer. If the queue length at the service initiation epoch is less than the threshold $L_1$, the service time of customers follows $S_1$ with a mean of ${\mu}_1$ and the arrival of customers follows a Poisson process with a rate of ${\lambda}_1$. When the queue length at the service initiation epoch is equal to or greater than $L_1$ and less than $L_2$, the service time is changed to $S_2$ with a mean of $${\mu}_2{\geq_-}{\mu}_1$$. The arrival rate is still ${\lambda}_1$. Finally, if the queue length at the service initiation epoch is greater than $L_2$, the arrival rate of customers are also changed to a value of $${\lambda}_2({\leq_-}{\lambda}_1)$$ and the mean of the service times is ${\mu}_2$. By using the embedded Markov chain method, we derive queue length distribution at departure epochs. We also obtain the queue length distribution at an arbitrary time by the supplementary variable method. Finally, performance measures such as loss probability and mean waiting time are presented.

Inventory Control Policies for a Hospital Blood Bank: A Simulation and Regression Approach (병원의 혈액 재고관리를 위한 평가 모형 : 시뮬레이션 및 회귀분석 방법)

  • Suh, Jeong-Dae
    • IE interfaces
    • /
    • v.10 no.1
    • /
    • pp.119-134
    • /
    • 1997
  • The management of blood inventory is very important within the medical care system. The efficient management of blood supplies and demands for transfusions is of great economic and social importance to both hospitals and patients. For any blood type, there is a complex interaction among the optimal inventory level, daily demand level, daily supply level, transfusion to crossmatch ratio, crossmatch release period, issuing policy and the age of arriving units that determine the shortage and outdate rate. In this paper, we develop an efficient decision rule for blood inventory management in a hospital blood bank which can support efficient hospital blood inventory management using simulation. The primary use of the efficient decision rule will be to establish minimum cost function which consists of inventory levels, period in inventory, outdate and shortage rate for whole blood and various component inventories for a hospital blood bank or a transfusion service. If the administrator compute the mean daily demand for each blood type, the mean daily supply for each blood type, the length of the crossmatch release period and the average transfusion to crossmatch ratio, then it is possible to apply the efficient decision rule to compute the optimal inventory level, inventory period, outdate and shortage rate. This rule can also be used as a decision support system that allows the blood bank administrator to do sensitivity analysis related to controllable blood inventory parameters.

  • PDF

PV Power Prediction Models for City Energy Management System based on Weather Forecast Information (기상정보를 활용한 도시규모-EMS용 태양광 발전량 예측모델)

  • Eum, Ji-Young;Choi, Hyeong-Jin;Cho, Soo-Hwan
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.3
    • /
    • pp.393-398
    • /
    • 2015
  • City or Community-scale Energy Management System(CEMS) is used to reduce the total energy consumed in the city by arranging the energy resources efficiently at the planning stage and controlling them economically at the operating stage. Of the operational functions of the CEMS, generation forecasting of renewable energy resources is an essential feature for the effective supply scheduling. This is because it can develop daily operating schedules of controllable generators in the city (e.g. diesel turbine, micro-gas turbine, ESS, CHP and so on) in order to minimize the inflow of the external power supply system, considering the amount of power generated by the uncontrollable renewable energy resources. This paper is written to introduce numerical models for photo-voltaic power generation prediction based on the weather forecasting information. Unlike the conventional methods using the average radiation or average utilization rate, the proposed models are developed for CEMS applications using the realtime weather forecast information provided by the National Weather Service.

Preparation of Co3O4/NF Anode for Lithium-ion Batteries

  • Tian, Shiyi;Li, Botao;Zhang, Bochao;Wang, Yang;Yang, Xu;Ye, Han;Xia, Zhijie;Zheng, Guoxu
    • Journal of Electrochemical Science and Technology
    • /
    • v.11 no.4
    • /
    • pp.384-391
    • /
    • 2020
  • Due to its characteristics of light weight, high energy density, good safety, long service life, no memory effect, and environmental friendliness, lithium-ion batteries (LIBs) are widely used in various portable electronic products. The capacity and performance of LIBs largely depend on the performance of electrode materials. Therefore, the development of better positive and negative materials is the focus of current research. The application of metal organic framework materials (MOFs) derivatives in energy storage has attracted much attention and research. Using MOFs as precursors, porous metal oxides and porous carbon materials with controllable structure can be obtained. In this paper, rod-shaped Co-MOF-74 was grown on Ni Foam (NF) by hydrothermal method, and then Co-MOF-74/NF precursor was heat-treated to obtain rodshaped Co3O4/NF. Ni Foam was skeleton structured, which effectively relieved. The change of internal stress changes and destroys the structural volume of the electrode material and reduces the capacity attenuation. Co3O4/NF composite material has a specific discharge capacity of up to 1858 mA h/g for the first time, and a reversible capacity of up to 902.4 mA h/g at a current density of 200 mA/g, and has excellent rate and impedance performance. The synthesis strategy reported in this article opens the way to design high-performance electrodes for energy storage and electrochemical catalysis.