• Title/Summary/Keyword: Controled blasting

Search Result 4, Processing Time 0.016 seconds

Development and Performance Evaluation of Shaped Charge for Controled Blasting (조절발파를 위한 성형폭약의 제작과 성능 평가)

  • Kim, Jung-Gyu;Yang, Hyung-Sik;Kim, Jong-Gwan
    • Explosives and Blasting
    • /
    • v.34 no.3
    • /
    • pp.1-9
    • /
    • 2016
  • The shaped charge were made for identifying the effect of controled blasting using relatively low VOD explosive for cutting rock mass with changing quality and thickness of metal liner. The metal liner was attached on both sides of a charge for directional cutting, when the shaped charge exploded in rock mass. Also, a efficiency of shaped charge was identified by concrete member experiment. And a center guide used for maintaining stand-off between shaped charge and hole wall. A case of Fe liner of thickness 0.8mm formed the deepest notch of experiments and the directional cutting of concrete member was identified.

An Experimental Study on Blasting Collapse Behavior of Asymmetry Structure with High Aspect Ratio (고종횡비 비대칭 구조물의 발파붕괴 거동에 관한 연구)

  • Song, Young-Suk;Jung, Min-Su;Jung, Dong-Wol;Hur, Won-Ho
    • Explosives and Blasting
    • /
    • v.31 no.1
    • /
    • pp.1-10
    • /
    • 2013
  • In blasting demolition, a method would be chosen among many depends on shape and system of a structure and its surround. To demolish using explosives a structure, which is asymmetric and with high aspect ratio, pre-weakening, explosive locations, detonating delay, and surround conditions are needed to be considered in front to design blasting demolition plan. In this study, to over turn asymmetric and high aspect ratio structure in safe, a simulation using a software named Extreme Loadings for Structures, ELS, had performed. In results, it is achieved optimized pre-weakening shapes and locations, which prevent kick back motion of the structure when it collapse, by analyzing moment distribution caused by pre-weakening. And of structural collapse and by minimizing asymmetric structure's torsional moment. Also, after the demolition, simulation results are also compared with actual collapse behavior. In results, it is confirmed the accuracy of collapse behaviour simulation results, and in blasting demolition, kick back motion can be controled by adjusting pre-weakening shape and location, and the torsional moment of an asymmetric structure also can be solved by optimizing detonation locations and its time intervals.

Consideration on Limitations of Square and Cube Root Scaled Distances in Controled Blast Design (제어발파설계에서 자승근 및 삼승근 환산거리 기법의 적용한계에 대한 고찰)

  • Choi, Byung-Hee;Ryu, Chang-Ha;Jeong, Ju-Hwan
    • Explosives and Blasting
    • /
    • v.28 no.1
    • /
    • pp.27-39
    • /
    • 2010
  • Blast design equations based on the concept of scaled distances can be obtained from the statistical analysis on measured peak particle velocity data of ground vibrations. These equations represents the minimum scale distance of various recommendations for safe blasting. Two types of scaled distance widely used in Korea are the square root scaled distance (SRSD) and cube root scaled distance (CRSD). Thus, the design equations have the forms of $D/\sqrt{W}{\geq}30m/kg^{1/2}$ and $D/\sqrt[3]{W}{\geq}60m/kg^{1/3}$ in the cases of SRSD and CRSD, respectively. With these equations and known distance, we can calculate the maximum charge weight per delay that can assure the safety of nearby structures against ground vibrations. The maximum charge weights per delay, however, are in the orders of $W=O(D^2)$ and $W=O(D^3)$ for SRSD and CRSD, respectively. So, compared with SRSD, the maximum charge for CRSD increases without bound especially after the intersection point of these two charge functions despite of the similar goodness of fits. To prevent structural damage that may be caused by the excessive charge in the case of CRSD, we suggest that CRSD be used within a specified distance slightly beyond the intersection point. The exact limit is up to the point, beyond which the charge difference of SRSD and CRSD begins to exceed the maximum difference between the two within the intersection point.