• 제목/요약/키워드: Control tower

검색결과 360건 처리시간 0.022초

Elastoplastic FEM analysis of earthquake response for the field-bolt joints of a tower-crane mast

  • Ushio, Yoshitaka;Saruwatari, Tomoharu;Nagano, Yasuyuki
    • Advances in Computational Design
    • /
    • 제4권1호
    • /
    • pp.53-72
    • /
    • 2019
  • Safety measures for tower cranes are extremely important among the seismic countermeasures at high-rise building construction sites. In particular, the collapse of a tower crane from a high position is a very serious catastrophe. An example of such an accident due to an earthquake is the case of the Taipei 101 Building (the author was the project director), which occurred on March 31, 2002. Failure of the bolted joints of the tower-crane mast was the direct cause of the collapse. Therefore, it is necessary to design for this eventuality and to take the necessary measures on construction sites. This can only be done by understanding the precise dynamic behavior of mast joints during an earthquake. Consequently, we created a new hybrid-element model (using beam, shell, and solid elements) that not only expressed the detailed behavior of the site joints of a tower-crane mast during an earthquake but also suppressed any increase in the total calculation time and revealed its behavior through computer simulations. Using the proposed structural model and simulation method, effective information for designing safe joints during earthquakes can be provided by considering workability (control of the bolt pretension axial force and other factors) and less construction cost. Notably, this analysis showed that the joint behavior of the initial pretension axial force of a bolt is considerably reduced after the axial force of the bolt exceeds the yield strength. A maximum decrease of 50% in the initial pretension axial force under the El Centro N-S Wave ($v_{max}=100cm/s$) was observed. Furthermore, this method can be applied to analyze the seismic responses of general temporary structures in construction sites.

공중물체의 자세제어 및 안정화를 위한 밸런스 빔 제어기(신건설장비) 구현 (An Implementation of Balance Beam Controller(New Construction Machinery) for an Attitude Control and Stabilization of an Unstructured Object)

  • 이건영;김진오
    • 대한전기학회논문지:시스템및제어부문D
    • /
    • 제52권1호
    • /
    • pp.38-44
    • /
    • 2003
  • In this study, the balance beam control subsystem, new type of construction machinery using the mechanism of CMG (control moment gyro), for the attitude control of an unstructured object such as a beam carried by a tower crane, is designed and implemented. The balance beam controller consists of a wheel spinning at high speed and an outer gimbal for controlling the attitude of the wheel. Two motors, one for the wheel and the other for the gimbal, are used. Applying force to the spin axis of the wheel, as an input of the system, leads the torque about the axis because of the gyro effects. This torque is used to control the attitude of the unstructured object in this study. For the stabilizer function, in addition, holding the load at the current position, the attitude of the wheel is freed by cutting the power applied to the gimbal motor of the balance beam controller, which result in the braking force to stop the load by gyro effect. The works presented here include the mechanical system of the balance beam controller, the remote controller, the servo controller and the control software for the system. We also present experimental results to show that the system we proposed is useful as a new construction machinery which can control the attitude of the beam hanging from a tower crane.

Experimental investigation on a freestanding bridge tower under wind and wave loads

  • Bai, Xiaodong;Guo, Anxin;Liu, Hao;Chen, Wenli;Liu, Gao;Liu, Tianchen;Chen, Shangyou;Li, Hui
    • Structural Engineering and Mechanics
    • /
    • 제57권5호
    • /
    • pp.951-968
    • /
    • 2016
  • Long-span cross-strait bridges extending into deep-sea waters are exposed to complex marine environments. During the construction stage, the flexible freestanding bridge towers are more vulnerable to environmental loads imposed by wind and wave loads. This paper presents an experimental investigation on the dynamic responses of a 389-m-high freestanding bridge tower model in a test facility with a wind tunnel and a wave flume. An elastic bridge model with a geometric scale of 1:150 was designed based on Froude similarity and was tested under wind-only, wave-only and wind-wave combined conditions. The dynamic responses obtained from the tests indicate that large deformation under resonant sea states could be a structural challenge. The dominant role of the wind loads and the wave loads change according to the sea states. The joint wind and wave loads have complex effects on the dynamic responses of the structure, depending on the approaching direction angle and the fluid-induced vibration mechanisms of the waves and wind.

Nonlinear section model for analysis of RC circular tower structures weakened by openings

  • Lechman, Marek;Stachurski, Andrzej
    • Structural Engineering and Mechanics
    • /
    • 제20권2호
    • /
    • pp.161-172
    • /
    • 2005
  • This paper presents the section model for analysis of RC circular tower structures based on nonlinear material laws. The governing equations for normal strains due to the bending moment and the normal force are derived in the case when openings are located symmetrically in respect to the bending direction. In this approach the additional reinforcement at openings is also taken into account. The mathematical model is expressed in the form of a set of nonlinear equations which are solved by means of the minimization of the sums of the second powers of the residuals. For minimization the BFGS quasi-Newton and/or Hooke-Jeeves local minimizers suitably modified are applied to take into account the box constraints on variables. The model is verified on the set of data encountered in engineering practice. The numerical examples illustrate the effects of the loading eccentricity and size of the opening on the strains and stresses in concrete and steel in the cross-sections under consideration. Calculated results indicate that the additional reinforcement at the openings increases the resistance capacity of the section by several percent.

기계식 주차설비 원격 고장감시 및 진단 시스템 구현 (A study on remote monitoring & diagnosis system for tower parting facility)

  • 이원태;차정섭;이재조;김관호;김박의
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2000년도 하계학술대회 논문집 D
    • /
    • pp.3184-3186
    • /
    • 2000
  • This paper describes the remote monitoring & diagnosis system of tower parking facilities. This system consists of central station, monitoring equipments and parking system control panel. The central station is developed under client/server architecture, and the monitoring systems are connected to central station by LAN using RAS constructed PSTN. This system offers real-time fault detection and data acquisition of tower parking system.

  • PDF

The damping efficiency of vortex-induced vibration by tuned-mass damper of a tower-supported steel stack

  • Homma, Shin;Maeda, Junji;Hanada, Naoya
    • Wind and Structures
    • /
    • 제12권4호
    • /
    • pp.333-347
    • /
    • 2009
  • Many tower-supported steel stacks have been constructed in Japan, primarily for economic reasons. However the dynamic behavior of these stacks under a strong wind is not well known and the wind load design standard for this type of a stack has not yet been formulated. In light of this situation, we carried out wind response observation of an operating tower-supported steel stack with and without a tuned-mass damper. The observation revealed the performance of the tuned-mass damper installed on the stack in order to control the wind-induced vibration. Based on the observed data, we performed a wind tunnel test of a specimen of the stack. In this paper we report the results of the wind tunnel test and some comparisons with the results of observation. Our findings are as follows: 1) the tuned-mass damper installed on the specimen in the wind tunnel test worked as well as the one on the observed stack, 2) the amplitude of the vortex-induced vibration of the specimen corresponded approximately to that of the observed stack, and 3) correlation between Scruton number and reduced amplitude, y/d, (y is amplitude, d is diameter) was confirmed by both the wind tunnel test and the observed results.

200kW 탑형 태양열발전시스템에서 사용되는 Heliostat의 집열특성 분석 (Analysis of Energy Concentration Characteristics of Heliostat used in 200kW Tower Type Solar Thermal Power Plant)

  • 박영칠
    • 한국태양에너지학회 논문집
    • /
    • 제31권3호
    • /
    • pp.80-88
    • /
    • 2011
  • Heliostat in the tower type solar thermal power plant is a sun tracking mirror system to reflect the solar energy to the receiver and the optical performance of it affects to the efficiency of whole power plant most significantly. Thus a solid understanding of heliostat's energy concentration characteristics is the most important step in designing of the heliostat field and the whole power plant. The work presented here is the analysis of energy concentration characteristics of heliostat used in 200kW solar thermal power plant, where the receiver located at 43m high in tower has $2{\times}2$m rectangular shape. The heliostat reflective surface is formed by 4 of $1{\times}1$m flat plate mirror facet and the mirror facet is mounted on the spherical frame. The direct normal incident radiation models in vernal equinox, summer solstice, autumnal equinox and winter solstice are first derived from the actually measured data. Then the intercept ratio, heat flux distribution and total energy collected at the receiver for the heliostats located in the various places of the heliostat field are investigated. Finally the effect of mirror facet installation error on the optical performance of the heliostat is analyzed.

Experimental Study on the Enhancement of Particle Removal Efficiency in Spray Tower Scrubber Using Electrospray

  • Kim, Hyeok-Gyu;Kim, Hong-Jik;Lee, Myong-Hwa;Kim, Jong-Ho
    • Asian Journal of Atmospheric Environment
    • /
    • 제8권2호
    • /
    • pp.89-95
    • /
    • 2014
  • There have been a lot of efforts to keep permissible emission standards and to reduce the amount of emitted air pollutants. There are several air pollution control equipments, however, wet scrubber is used to remove particulate matters and gaseous pollutants simultaneously, even if it has low collection efficiency in the particle size less than $5.0{\mu}m$. To overcome this problem, we introduced a spray tower scrubber with an electrospray system which a high voltage was indirectly applied. We found that collection efficiency of fine particles in the electrospray system was improved by increasing electrical field strength and the ratio of liquid-gas flow rate (from 41% to 84% for $0.3{\mu}m$ particles). In addition, a number of small droplets generated from an electrospray system led high collection efficiency, resulting from electrostatic attraction between droplets and particles and higher collision frequency. Therefore, we can conclude that the introduction of an electrospray system is quite effective to increase the particle removal efficiency of a spray tower scrubber.

200kW 탑형 태양열발전시스템을 위한 Heliostat 반사면 구조 설계 (Design of Structure of Heliostat Reflective Surface for 200kW Tower Type Solar Thermal Power Plant)

  • 박영칠
    • 한국태양에너지학회 논문집
    • /
    • 제31권2호
    • /
    • pp.53-62
    • /
    • 2011
  • Heliostat in the tower type solar thermal power plant is a sun tracking mirror system to reflect the solar energy to the receiver and the optical performance of it affects to the efficiency of whole power plant most significantly. Thus a proper design of structure of the heliostat reflective surface could be the most important step in the construction of such power plant. The work presented here is a design of structure of optical surface of heliostat, which will be used in 200kW solar thermal power plant. The receiver located at 43(m) high from ground in tower has $2{\times}2$(m) rectangular shape. We first developed the software tool to simulate the energy concentration characteristics of heliostat using the ray tracing technique. Then, the shape of heliostat reflective surface is designed with the consideration of heliostat's energy concentration characteristics, production cost and productivity. The designed heliostat's reflective surface has a structure formed by canting four of $1{\times}1$(m) rectangular flat plate mirror facet and the center of each mirror facet is located on the spherical surface, where the spherical surface is formulated by the mirror facet mounting frame.

다물체 동역학 시뮬레이션 기반 4단 배수 타워의 동적 특성 연구 (Study on Dynamic Characteristics of 4-Step Drainage Tower Based on Multi-body Dynamics Simulation)

  • 박승운;한영환;전호영;이철희
    • 드라이브 ㆍ 컨트롤
    • /
    • 제20권4호
    • /
    • pp.9-16
    • /
    • 2023
  • This paper analyzed a drainage tower used to drain water in flooded areas. Multi-body dynamics simulation was used to analyze the dynamic behavior of the drainage tower. Structural analysis, flexible-body dynamic analysis, and rigid body dynamic analysis were done to study the maximum Von-Mises stress of the drainage tower. The results showed that the maximum Von-Mises stress occurs at the turn table, and it decreases when the angle of the boom is increased. Also, the rate of the change of angle affects the maximum stress so that the maximum stress changes more when the angular velocity of the boom increases. Based on the rigid body dynamic analysis and the theoretical analysis results, the centrifugal force from the angular velocity makes the difference in the maximum stress at the turn table because of the difference in their direction. Consequently, it was concluded that the centrifugal force should be considered when designing construction machinerythat can rotate.