• Title/Summary/Keyword: Control rod design

Search Result 157, Processing Time 0.027 seconds

Development of A Test Apparatus for Control Rod Drive Mechanism in Nuclear Power Plants

  • Kim, Choon-Kyung;Cheon, Jong-Min;Lee, Jong-Moo;Kim, Seog-Joo;Kwon, Soon-Man
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.1732-1735
    • /
    • 2003
  • In this paper, a DSP-based test apparatus for Control Rod Drive Mechanism (CRDM) that is used in nuclear power plants is described. Using this apparatus, we can test the mechanical and electrical characteristics of CRDM and obtain some information about how to improve the CRDM further and how to design a power controller to actuate the CRDM. Since firing angles can be directly applied to the gate-drive circuits of thyristors in the power controller by using this apparatus, the maximum and minimum values of firing angles within available limits are easily measured. Also step-current inputs help us investigate each coil's response characteristics. Therefore, we can easily find the range of control gains which enables a stable CRDM operation in insertion and withdrawal actions at high speed, mid speed, and low speed. Since this apparatus has a test mode in which an insertion or withdrawal action is divided into several phases so that the current command for each phase is given step by step, we may judge whether the CRDM works as expected or not. We also describe a fault detection capability of the test apparatus for the power controller by using discrete Fourier transform.

  • PDF

Drop and Damping Characteristics of the CEDM for the Integral Reactor (일체형원자로 제어봉구동장치의 낙하 및 완충특성)

  • Choi, M.H.;Kim, J.H.;Huh, H.;Yu, J.Y.
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.20 no.7
    • /
    • pp.658-664
    • /
    • 2010
  • A control element drive mechanism(CEDM) is a reactor regulating system, which inserts, withdraws or maintains a control rod containing a neutron absorbing material within a reactor core to control the reactivity of the core. The ball-screw type CEDM for the integral reactor has a spring-damper system to reduce the impact force due to the scram of the CEDM. This paper describes the experimental results to obtain the drop and damping characteristics of the CEDM. The drop tests are performed by using a drop test rig and a facility. A drop time and a displacement after an impact are measured using a LVDT. The influences of the rod weight, the drop height and the flow area of hydraulic damper on the drop and damping behavior are also estimated on the basis of test results. The drop time of the control element is within 4.5s to meet the design requirement, and the maximum displacement is measured as 15.6 mm. It is also found that the damping system using a spring-hydraulic damper plays a good damper role in the CEDM.

Experimental Study of GA and Heuristic Control Rule based PID Controller for 2-Dimensional Inverted Pendulum (2차원 도립진자를 위한 GA 및 Heuristic한 제어규칙 기반 PID제어기의 실험적 연구)

  • 서강면;강문성
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.9 no.8
    • /
    • pp.623-631
    • /
    • 2003
  • We have fabricated the two-dimensional inverted pendulum system and designed its controller. The two-dimensional inverted pendulum system, which is composed of X-Y table, is actuated through timing belt by each of two geared DC motors. And the control goal is that the rod is always kept to a vertical position to any distrubance and is quickly moved to the desired position. Because this system has generally nonlinear dynamic characteristics and X-axis and Y-axis move together, it is very difficult to find its exact mathematical model and to design its controller. Therefore, we have designed the PID controller with simple structure and excellent performance. Genetic algorithm(GA), which is blown as one of probabilistic searching methods, and human's heuristic control strategy are introduced to design an optimal PID controller. The usefulness of the proposed GA based PID coefficient searching technique is verified through the experiments and computer simulations.

ATWS Performance of KALIMER Uranium Metal Core

  • Dohee Hahn;Kim, Young C.
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1996.05b
    • /
    • pp.592-597
    • /
    • 1996
  • The KALIMER core, of which nuclear design is largely governed by inherent safety and reactivity control issues, is fueled with metallic fuel, and the initial core will be loaded with 20% enriched Uranium metal fuel. KALIMER safety design objectives include the accommodation of unprotected, ATWS events without operator action, and without the support of active shutdown, shutdown heat removal, or any automatic system without damage to the plant and without jeopardizing public safety. The transient analysis of the core designs has been focused on severe events to assess the margins in the design, and ATWS events are the most severe events that must be accommodated by the KALIMER design. The ATWS performance has been evaluated for the preliminary initial core design of KALIMER with a particular emphasis on the inherent negative reactivity feedback effects, including the Doppler, sodium density, fuel axial expansion, core radial expansion, and control rod driveline expansion. Results show that the Uranium metal core design meets the temperature limits with margin.

  • PDF

Performance Qualification Test of the CRDM for JRTR (요르단 연구용원자로 제어봉구동장치의 성능검증시험)

  • Choi, M.H.;Cho, Y.G.;Kim, J.H.;Lee, K.H.
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.25 no.12
    • /
    • pp.807-814
    • /
    • 2015
  • A control rod drive mechanism(CRDM) is a reactor regulating system, which inserts, withdraws or maintains a control rod containing a neutron absorbing material within a reactor core to control the reactivity of the core. The top-mounted CRDM for Jordan Research and Training Reactor(JRTR) with 5 MW power has been designed and fabricated based on the HANARO's experience through KAERI and DAEWOO consortium project. This paper describes the performance qualification test results to demonstrate the operability of a prototype and four production CRDMs during the reactor lifetime. The driving performance, the drop performance and the endurance tests for CRDM are carried out at a test rig simulating the actual reactor conditions. A vibration of internal components due to the coolant flow is also measured using a laser vibrometer. As a result, the CRDMs are driven having a good driving performance without a malfunction between command and output signals for the stepping motor. Also, the pure drop time and the impact acceleration are within 0.72 s and 4.2 g to meet the design requirements, and the vibrational displacement of control rod is measured as maximum $5.2{\mu}m$.

Wrinkle Defect of Low Carbon Steel in Wire Rod Rolling (저탄소강 선재 압연의 주름성 결함)

  • Kim H. Y.;Kwon H. C.;Byon S. M.;Park H. D.;Im Y. T.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2004.08a
    • /
    • pp.307-316
    • /
    • 2004
  • This study examined the cause of the wrinkle defect which is frequently encountered in wire rod rolling of low carbon steel$(C0.08\~0.13wt.\%)$. Even a small defect on the surface of rolled bars can easily develop into fatal cracks during cold heading process of low carbon steel, and it is therefore necessary to minimize inherent defects on the surface of hot rolled bars. Hot rolling process of low carbon steel was analyzed to identify the cause of the wrinkle defect in conjunction with FE analysis. The integrated analysis revealed that the wrinkle defect initiated in the first stage of rolling, and it was at the billet edge where severe deformation and drastic temperature drop were present. To elucidate the micro-mechanical mechanism of the wrinkle defect, hot compression tests were carried out at various temperatures and strain rates using Gleeble-3800. The surface profile of the each other compressed specimens was compared, and rough surface lines were observed at relatively low temperatures. Those surface defects can develop into wrinkles during multi-pass rolling. To control the wrinkle defect in rolling, it is necessary to design an adequate caliber which can minimize the loss of ductility, and thereby prevent flow localization. To use the result of this study fur other steels, the quantitative measure of the wrinkle defect and flow localization parameter should be proposed.

  • PDF

A study on the cross section in pipe type orifice of suitable piston rod moving in gas spring elevation working (가스 스프링 Elevation 동작에 적합한 피스톤 로드 움직임의 관형 오리피스 단면에 관한 연구)

  • Lee, Jeong-Ick
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.11
    • /
    • pp.7745-7753
    • /
    • 2015
  • Gas springs of the television is to control the piston speed when operating under along stroke(200~300 mm, television elevation)is possible. User by this principle is capable of elevation adjustment. First carried out a flow analysis of the piston. A piston speed adjustment technique for precise pipe type cross-section was examined. The piston structure for flow rate control and elevation action is proposed. This study is the development of a gas spring of more than 50 inch television with a large television stand. Hollow piston rod for optimal control(the outer diameter 19.9 mm, the inner diameter 13.9 mm) was injected into the nitrogen gas(0.3 mm/s) in. As a result, the flow rate the pressure drop of the piston rod as the increase was increased without any change of the external force. As a result, control of the displacement via the gas spring is possible.

A Study on the Design of Flow Control Valve Attached to Vane Pump for Power Steering (파워 스티어링용 베인 펌프 유량 제어부 설계에 관한 연구)

  • 이윤태
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.9 no.5
    • /
    • pp.87-95
    • /
    • 2000
  • The numerical analysis and the experiments are carried out to develop the design program for the flow control valve attached to the vane pump for power steering. The factors affecting the flow rate characteristics are analyzed by the experiments and the numerical analysis. The results are summarized as follows; (1) the main factors affecting to the first and second control flow rate are the diameter of big and small rod of the spool. (2) the cut off is mainly affected by the main spring constant, the initial displacement of main spring and the small diameter of the spool. (3) the dropping slope characteristics are decided by the chamfer of spool and the dynamic characteristics of the spool.

  • PDF

A Model Predictive Controller for Nuclear Reactor Power

  • Na Man Gyun;Shin Sun Ho;Kim Whee Cheol
    • Nuclear Engineering and Technology
    • /
    • v.35 no.5
    • /
    • pp.399-411
    • /
    • 2003
  • A model predictive control method is applied to design an automatic controller for thermal power control in a reactor core. The basic concept of the model predictive control is to solve an optimization problem for a finite future at current time and to implement as the current control input only the first optimal control input among the solutions of the finite time steps. At the next time step, the second optimal control input is not implemented and the procedure to solve the optimization problem is then repeated. The objectives of the proposed model predictive controller are to minimize the difference between the output and the desired output and the variation of the control rod position. The nonlinear PWR plant model (a nonlinear point kinetics equation with six delayed neutron groups and the lumped thermal-hydraulic balance equations) is used to verify the proposed controller of reactor power. And a controller design model used for designing the model predictive controller is obtained by applying a parameter estimation algorithm at an initial stage. From results of numerical simulation to check the controllability of the proposed controller at the $5\%/min$ ramp increase or decrease of a desired load and its $10\%$ step increase or decrease which are design requirements, the performances of this controller are proved to be excellent.

Design and Performance Investigation of Bypass-Type MR Shock Dampers (바이패스형 MR 충격 댐퍼의 설계 및 성능 해석)

  • Nam Yun-Joo;Kim Dong-Uk;Lee Yuk-Hyung;Park Myeong-Kwan
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.5 s.248
    • /
    • pp.550-559
    • /
    • 2006
  • This paper presents designs and performance investigations of two bypass-type MR (magneto-rheological) shock dampers for high impulsive force systems, one of which is with single rod and the other with double rod. First of all, on the basis of the Bingham properties of the MR fluid and the magnetic field analysis of the magnetic circuit, the MR shock dampers are designed and manufactured. After experimental investigations on their magnetic field-dependent damping forces and responses characteristics, dynamic models of the proposed dampers are formulated and compared. Then, a simple 1 degree-of-freedom mass-drop system is constructed, and the effective and practical control algorithm is designed by considering dynamic characteristics of the shock control system. The shock control performances of the proposed MR shock dampers are verified through the comparison study of experiment results with simulation ones.