• 제목/요약/키워드: Control plants

검색결과 4,107건 처리시간 0.034초

고추와 옥수수 실생의 생장에 미치는 균근의 효과 (Effect of Vesicular-Arbuscular Mycorrhizae on the Growth of Bell Pepper and Corn Seedlings)

  • Mun, Hyeong-Tae;Kim, Chong-Kyun;Choe, Du-Mun
    • The Korean Journal of Ecology
    • /
    • 제13권1호
    • /
    • pp.1-8
    • /
    • 1990
  • Effects of mycorrhizal infection on the growth of bell pepper (Capsicum annuum) and corn (Zea mays) seedlings have been studied by comparing plants grown in sterilized soil/sand mixtures to plants grown in sterilized soil/sand mixtures with topping the original non-sterile field soil. The original nonsterile field soil, which were taken from the bell pepper field, contained a high level of endmycorrhizal spores. After seven weeks, the shoot height of inoculated plants was increased by 110% in bell pepper, and 90% in corn compared with the control plants. The average above-ground biomass of inoculated plant was increased by 88% in bell pepper and 71% in corn compared with the control plants. The shoot-root ratios in bell pepper and corn were 2.7 and 1.8 for the control plants, and 4.3 and 2.7 for the treatment plants, respectively. Phosphorus level in inoculated plant was higher than that of the control plant. However, nitrogen contents were similar between the control and the treatment plants. The control plants didi not form vesicular-arbuscular mycorrhizae during the experimental period.

  • PDF

Effect of Treatment with Selected Plant Extracts on the Physiological and Biochemical Parameters of Rice Plants under Salt Stress

  • Hyun-Hwa Park;Pyae Pyae Win;Yong-In Kuk
    • 한국작물학회지
    • /
    • 제69권1호
    • /
    • pp.1-14
    • /
    • 2024
  • High soil salinity is the most severe threat to global rice production as it causes a significant decline in rice yield. Here, we investigated the effects of various plant extracts on rice plant stress associated with high salinity. Additionally, we examined various physiological and biochemical parameters such as growth, photosynthetic activity, chlorophyll content, and lipid peroxidation - in rice plants after treatment with selected plant extracts under salt stress conditions. Of the 11 extracts tested, four - soybean leaf, soybean stem, moringa (Moringa oleifera), and Undaria pinnatifida extracts - were found to effectively reduce salt stress. A reduction of only 3-23% in shoot fresh weight was observed in rice plants under salt stress that were treated with these extracts, compared to the 43% reduction observed in plants that were exposed to stress but not given plant extract treatments (control plants). The effectiveness varied with the concentration of the plant extracts. Water content was higher in rice plants treated with the extracts than in the control plants after 6 d of salt stress, but not after 4 d of salt stress. Although photosynthetic efficiency (Fv/Fm), electron transport rate (ETR), and the content of pigments (chlorophyll and carotenoid) varied based on the types and levels of stress and the extracts that the rice plants were treated with, generally, photosynthetic efficiency and pigment content were higher in the treated rice compared to control plants. Reactive oxygen species (ROS), such as superoxide radicals, hydrogen peroxide (H2O2), and malondialdehyde (MDA), increased as the duration of stress increased. ROS and MDA levels were lower in the treated rice than in the control plants. Proline and soluble sugar accumulation also increased with the duration of the stress period. However, proline and soluble sugar accumulation were lower in the treated rice than in the control plants. Generally, the values of all the parameters investigated in this study were similar, regardless of the plant extract used to treat the rice plants. Thus, the extracts found to be effective can be used to alleviate the adverse effects of stress on rice crops associated with high-salinity soils.

Effect of Drought Stress on Carbohydrate Composition and Concentration in White Clover

  • Kim, Tae-Hwan;Lee, Bok-Rye;Jung, Woo-Jin;Kim, Dae-Hyun;Kim, Kil-Yong
    • 한국작물학회지
    • /
    • 제47권1호
    • /
    • pp.48-53
    • /
    • 2002
  • To investigate the changes in the composition and pool size of carbohydrates under drought stress, white clover (Triforium repens L.) were exposed to -0.04 Mpa(well-watered, control) or to -0.12 Mpa (drought-stressed) of soil water potential during 28 days. Dry weight of leaves in drought-stressed plants was remarkably decreased by 45% within 14 days and 74% within 28 days compared to those of the control. Glucose concentration in drought-stressed plants was increased, while that of control was slightly decreased or remained at same level throughout experimental period. Fructose and sucrose concentrations in leaves were not significantly changed for drought-stressed plants, but those of the control were significantly decreased on plant after 14 days. Fructose and sucrose concentrations in stolon of control plants were sharply decreased, while that of drought-stressed plants was less varied. Those concentrations in roots were generally increased in drought-stressed plants. The concentration of total soluble sugars at 28 day was 438.0 and 632.6 mg $g^{-l}$ dwt. in control and drought stressed plants, respectively. Starch concentration of stolon and roots of control plants was significantly increased to 2.0 and 1.4 times of initial level, respectively, whereas those of drought stressed plants was nearly same level or slightly decreased compared to initial level.l.

IOT Intelligent Watering Sensor For Indoor Plant

  • Hana, Mujlid;Haneen Daifallah, Alghamdi;Hind Abdulaziz, Alkharashi;Marah Awadh, Alkhaldi
    • International Journal of Computer Science & Network Security
    • /
    • 제22권12호
    • /
    • pp.171-177
    • /
    • 2022
  • The number of people who own indoor plants is growing today, but as a result of their busy lifestyles-such as work or travel-as well as a lack of enthusiasm in caring for their plants, their plants wither. The use of an irrigation control system with a surveillance camera can assist such folks in taking care of their plants. Such a device can assist in remotely watering plants at predetermined times and checking on the health of the plants. The proprietors would be able to live comfortably without feeling bad thanks to this change. Internet access is required for this technology in order to monitor the plants and control the watering through apps. A sensor is installed in the soil to monitor soil humidity and send data to the microcontroller for irrigation, allowing the owner to schedule irrigation as they see fit and keep an eye on their plants all day. With the use of a remote irrigation control system, the plants will grow properly and be irrigated with the proper amount of water, and the owners will be so glad and delighted to watch their plants. Knowing the time and quantity of water are vital parts of the plant growth.

소수력 발전소의 무인화 구축 설계 (The Remote Control System Design of Small Hydropower Plants)

  • 이경배;김영태;백두현;이은웅
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2004년도 하계학술대회 논문집 B
    • /
    • pp.950-952
    • /
    • 2004
  • The developments of small hydropower plants in korea have been delayed by rising construction cost/low feasibility, local people's disagreement even though the capacity of water resources are enough. However, the recent raising of electricity purchasing price, the government's enlarging plan of small hydropower plants caused the newly development to be accelerated. In this paper, the design of remote control of small hydropower plants are proposed for better economy and easy control. The operation and monitoring of power plants are planned based on One(1)-man control from the central control room of regional area water works/ operating station and engineering station multipurpose dam offices with the equipments of OS, RTU(PLC), KT leased lines, WMPS, CSU and etc.

  • PDF

Performance of MPS Bacterial Inoculation in Two Consecutive Growth of Maize Plants

  • Park, Myung-Su;Gadagi, Ravi;Singvilay, Olayvanh;Kim, Chung-Woo;Chung, Hee-Kyung;Ahn, Ki-Sup;Sa, Tong-Min
    • 한국환경농학회지
    • /
    • 제20권5호
    • /
    • pp.335-339
    • /
    • 2001
  • Two successive in vitro experiments were carried out to examine the effect of MPS bacterial inoculation on growth, and nitrogen and phosphorus accumulation of maize plants under greenhouse condition in the same soil. There were four treatments, uninoculated control and three phosphate solubilizing bacterial inoculations, viz., Pseudomonas striata, Burkholderia cepacia and Serratia marcescens. The inoculated plants showed the higher plant height, total dry mass, nitrogen and phosphorus accumulation when compared to uninoculated control plants in both experiments. In the combined data analysis from two experiments, the plants inoculated with P. striata and B. cepacia showed significantly higher plant height, total dry mass and P accumulation when compared to S. marcescens inoculated plant and uninoculated control plants. The P. striata and B. cepacia inoculation enhanced total dry matter accumulation by 14% and phosphorus accumulation by 25% over the uninoculated control plants. The nitrogen and phosphorus concentration of maize plants were also increased due to MPS bacterial inoculation, however, the effect was not significant.

  • PDF

한약재 및 채소류 물추출물 첨가에 의한 깍두기 숙성 적기의 연장 효과 (Effect of Hot Water Extract of Natural Plants on the Prolongation of Optimal Fermentation Time of Kakdugi)

  • 김미리;모은경;김진희;이근종;성창근
    • 한국식품영양과학회지
    • /
    • 제28권2호
    • /
    • pp.365-370
    • /
    • 1999
  • To investigate the effect of natural plants on the prolongation of optimal fermentation time of kakdugi, various kakdugies, added with hot water extract from 105 kinds of natural plants(68 medicinal plants and 37 vegetables), were fermented at 20oC until optimal fermentation time. In case of control without addition, the time required to reach the optimum acidity(0.6% lactic acid) was 60 hr. Among 105 kinds tested, 48 plant(42 medicinal plants and 6vegetables) extracts decreased the acidity after 60 hr fermentation to less than 50% of control. In addition, these extracts extended the optimal fermen tation time(>120 hr) by more than 2 folds. Moreover, among the above 48 kinds, 12 sorts of extracts raised the hardness of kakdugi, by more than 30%, compared to control. And the number of lactic acid bacteria in kakdugi added with the above 12 kinds was not smaller than that of control. In sensory test, 8 kinds of medicinal plants(including Phyllostachys edulis) were found to be acceptable. Based on these results, it is suggested that kakdugi added with 8 kinds of medicinal plants was adequate in the prolongation of optimal fermentation time of kakdugi.

  • PDF

Induction of Defense Response Against Rhizoctonia solani in Cucumber Plants by Endophytic Bacterium Bacillus thuringiensis GS1

  • Seo, Dong-Jun;Nguyen, Dang-Minh-Chanh;Song, Yong-Su;Jung, Woo-Jin
    • Journal of Microbiology and Biotechnology
    • /
    • 제22권3호
    • /
    • pp.407-415
    • /
    • 2012
  • An endophytic bacterium, Bacillus thuringiensis GS1, was isolated from bracken (Pteridium aquilinum) and found to have maximal production of chitinase (4.3 units/ml) at 5 days after culture. This study investigated the ability of B. thuringiensis GS1 to induce resistance to Rhizoctonia solani KACC 40111 (RS) in cucumber plants. Chitinase activity was greatest in RS-treated plants at 4 days. ${\beta}$-1,3-Glucanase activity was highest in GS1-treated plants at 5 days. Guaiacol peroxidase (GPOD) activity increased continuously in all treated plants for 5 days. Ascorbate peroxidase (APX) activity in RS-treated plants was increased 1.5-fold compared with the control at 4 days. Polyphenol oxidase (PPO) activity in RS-treated plants was increased 1.5-fold compared with the control at 3 days. At 5 days after treatment, activity staining revealed three bands with chitinase activity (Ch1, Ch2, and Ch3) on SDS-PAGE of cucumber plants treated with GS1+RS, whereas only one band was observed for RS-treated plants (Ch2). One GPOD isozyme (Gp1) was also observed in response to treatment with RS and GS1+RS at 4 days. One APX band (Ap2) was present on the native-PAGE gel of the control, and GS1- and GS1+RS-treated plants at 1 day. PPO bands (Po1 and Po2) from RS- and GS1+RS-treated plants were stronger than in the control and GS1-treated plants upon native-PAGE at 5 days. Taken together, these results indicate that the induction of PR proteins and defense-related enzymes by B. thuringiensis GS1 might have suppressed the damping-off caused by R. solani KACC 40111 in cucumber plants.

산성배양에 공급에 의한 토마토 풋마름병 방제 (Control Strategy of Acidified Nutrient Solution on Bacterial Wilt of Tomato Plants)

  • 이영근;설균찬
    • 한국식물병리학회지
    • /
    • 제14권6호
    • /
    • pp.744-746
    • /
    • 1998
  • Control effect of acidified nutrient solution on bacterial wilt of tomato plants was tested by examining the degree of bacterial growth inhibition and plant damage due to the acidity. Ralstonia solanacearum, the causal bacterium of bacterial wilt of tomato plants, showed 105 times population reduction when the bacterium was cultured in the acidified nutrient solution (pH 3.5∼4.0). However, fruit yields were decreased only fifteen to twenty percents. These results suggest that control of the bacterial wilt of tomato plants may be possible with supplying acidified nutrient solution.

  • PDF

화력발전소에서의 국내 배출계수 산정 방안 연구 -먼지를 중심으로- (Estimating PM Emission Factor from Coal-Fired Power Plants in Korea)

  • 장기원;김형천;이용미;송덕종;정노을;김상균;홍지형;이석조;한종수
    • 한국대기환경학회지
    • /
    • 제27권5호
    • /
    • pp.485-493
    • /
    • 2011
  • In Korea, PM (Particulate Matter) emissions caused by coal-fired power plants are measured by a system, so called Clean Air Policy Support System (CAPSS), which uses foreign emission factors. However, the system fails to reflect the characteristics of domestic power plants. In this regard, this study aims to develop local, accurate domestic emission factors. The study measured the amount of TSP (Total Suspended Particulates), PM10 and PM2.5 by collecting samples from the latter parts of pollution control devices which were installed at 3 bituminous-fired power plants and 3 anthracite-fired power plants. The results showed that the average concentrations of TSP, PM10 and PM2.5 measured at bituminous-fired power plants were 4.63 mg/$Sm^3$, 2.96 mg/$Sm^3$ and 3.07 mg/$Sm^3$ respectively, much higher than those from anthracite-fired power plants (2.96 mg/$Sm^3$, 2.47 mg/$Sm^3$ and 1.37 mg/$Sm^3$, respectively). In addition, bituminous-fired power plants showed higher ratios of PM10/TSP and PM2.5/TSP with 0.66 and 0.92, respectively, compared to 0.82 and 0.46, the ratios of PM10/TSP and PM2.5/TSP measured in anthracite-fired power plants. Emission factors based-on concentration measurements were also higher for bituminous-fired power plants, and PM with smaller particles tended to have bigger difference in emission factors between the two fuels. This study calculated the amount of PM emissions by using the estimated emission factors. When it comes to the PM emissions, it was less than that of CAPSS while similar to that of CleanSYS in its amount. It is expected that the emission factors developed by this study will be used in Korea replacing foreign emission factors currently used in Korea by ensuring the objectivity and reliability as domestic emission factors.