• Title/Summary/Keyword: Control of distortion factor

Search Result 141, Processing Time 0.027 seconds

A Novel Bridgeless Interleaved Power Factor Correction Circuit with Single Current Sensor (단일 전류 센서를 이용하는 새로운 브리지 없는 인터리빙 방식의 역률 보상 회로)

  • Doan, Van-Tuan;Choi, Woojin
    • Proceedings of the KIPE Conference
    • /
    • 2016.07a
    • /
    • pp.363-364
    • /
    • 2016
  • In this paper, a novel bridgeless interleaved power factor correction circuit with single current sensor is proposed. The proposed control strategy requires only one current sensor for the interleaved bridgeless PFC. By sampling the output current, all the boost indictor currents can be calculated and used to control the input current according to the input voltage. The reduced number of current sensors and associated feedback circuits helps reduce the cost of system. The problem caused by the unequal current gain between current sensors inherently does not exist in the proposed topology. Thus, current sharing between converters can be achieved more accurately and the high frequency distortion is decreased. In addition, the proposed technique can be applied to the other kinds of interleaved PFC topologies. Performance of the proposed control strategy is verified by the experimental results with 6.6kW bridgeless interleaved PFC circuit.

  • PDF

Harmonics Reduction in Load control and Management system

  • Thueksathit, W.;Tipsuwanporn, V.;Hemawanit, P.;Gulpanich, S.;Srisuwan, K.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.2283-2286
    • /
    • 2003
  • This paper presents conservation of electrical energy in building with harmonics analysis and compensation which occur in electrical system. We use load controlling and management system in order to adjust load factor of system.The maximum demand limiting and controlling are used ,then the system can acquire the prediction and compare it to the maximum demand set point.The electrical signal analysis based on FFT technique. The harmonics are compensated by using harmonic filters.This system consists computer which works as controller, processor , analysis and database unit together with digital power meter in form of multidrop network through serial communication via RS-485.The load control system uses PLC to control load via serial communication RS-485. The A/D converter is used for sampling the electrical signals via parallel port of computer.The harmonic filters are controlled by a computer.The data of measurement such as voltage, current, power, power factor, total harmonic distortion, energy, etc., can be saved as database and analysis. The load factor is adjusted by limiting and controlling maximum demand. The load factor adjustment can reduce the cost of electric consumption and energy generation together with harmonics compensation in order to increase high efficiency of electrical system.

  • PDF

악조건하의 비동일평면 카메라 교정을 위한 알고리즘

  • Ahn, Taek-Jin;Lee, Moon-Kyu
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.7 no.12
    • /
    • pp.1001-1008
    • /
    • 2001
  • This paper presents a new camera calibration algorithm for ill-conditioned cases in which the camera plane is nearly parallel to a set of non-coplanar calibration boards. for the ill-conditioned case, most of existing calibration approaches such as Tsais radial-alignment-constraint method cannot be applied. Recently, for the ill-conditioned coplanar calibration Lee&Lee[16] proposed an iterative algorithm based on the least square method. The non-coplanar calibration algorithm presented in this paper is an iterative two-stage procedure with extends the previous coplanar calibration algorithm. Through the first stage, camera, position and orientation parameters as well as one radial distortion factor are determined optimally for a given data of the scale factor and the focal length. In the second stage, the scale factor and the focal length are locally optimized. This process is repeated until any improvement cannot be expected any more Computational results are provided to show the performance of the algorithm developed.

  • PDF

A study on the improvement in Q-factor chracteristics of VCO resonance part (VCO 공진부의 Q-factor 특성향상에 관한 연구)

  • Lee, Hyun-Jong;Kim, In-Sung;Min, Bok-Gi;Song, Jae-Sung
    • Proceedings of the KIEE Conference
    • /
    • 2005.07b
    • /
    • pp.1506-1508
    • /
    • 2005
  • VCO(voltage controlled oscillator) using mobile communication device decides direct characteristics as parts that affect important in stable oscillation and distortion characteristics of system. VCO used 900 MHz band was designed by the transformation of Colpitts circuit form use ADS that consider Q-factor to minimize phase noise. VCO manufactured together evaluation board and voltage control oscillator to FR-4 PCB. VCO experimented chracteristics after control through resonance department tuning. In our research, the designed VCO has 15.5 dBm output level at the bias condition of 6V and 10mA and the operating frequency range of 917 MHz$\sim$937 MHz band. Phase noise is -98.28 dBc/Hz at 1 MHz frequency offset from the carrier.

  • PDF

Improvement of input power factor on single phase full-bridge PWM AC/DC Converter (단상 full-bridge PWM AC/DC 콘버어터의 입력 역율개선)

  • Kim, Hyun-Soo;Park, Sung-Jun;Byun, Young-Bok;Kim, Kwang-Tae;Kwon, Soon-Jae;Kim, Cheul-U
    • Proceedings of the KIEE Conference
    • /
    • 1995.11a
    • /
    • pp.255-257
    • /
    • 1995
  • Many new electronic products are required to have a unity power factor and a distortion free input current waveform. In this parer, a high performance single phase AC/DC converter with input power factor correction is proposed. And each parameters are determined. Proposed control strategy has many advantages which include two Quadrants operation, simplified control circuit, high performance features and continuous Input current. The experimental results are included to verify the validity of this approach.

  • PDF

An Efficient and High-gain Inverter Based on The 3S Inverter Employs Model Predictive Control for PV Applications

  • Abdel-Rahim, Omar;Funato, Hirohito;Junnosuke, Haruna
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.4
    • /
    • pp.1484-1494
    • /
    • 2017
  • We present a two-stage inverter with high step-up conversion ratio engaging modified finite-set Model Predictive Control (MPC) for utility-integrated photovoltaic (PV) applications. The anticipated arrangement is fit for low power PV uses, the calculated efficiency at 150 W input power and 19 times boosting ratio was around 94%. The suggested high-gain dc-dc converter based on Cockcroft-Walton multiplier constitutes the first-stage of the offered structure, due to its high step-up ability. It can boost the input voltage up to 20 times. The 3S current-source inverter constitutes the second-stage. The 3S current-source inverter hires three semiconductor switches, in which one is functioning at high-frequency and the others are operating at fundamental-frequency. The high-switching pulses are varied in the procedure of unidirectional sine-wave to engender a current coordinated with the utility-voltage. The unidirectional current is shaped into alternating current by the synchronized push-pull configuration. The MPC process are intended to control the scheme and achieve the subsequent tasks, take out the Maximum Power (MP) from the PV, step-up the PV voltage, and introduces low current with low Total Harmonic Distortion (THD) and with unity power factor with the grid voltage.

The Improvement Effect of Input Current Waveform of Two New Main Switching Boost Rectifiers

  • Ha, Sung-Hyun;Kim, Chang-Il;Kim, Soo-Wook;Nam, Jing-Rak;Mun, Sang-Pil
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.22 no.3
    • /
    • pp.15-26
    • /
    • 2008
  • This paper proposes a new sinusoidal rectifier which improves input factor and input current waveform without complicated switching modulation such as pulse width or a complicated feed back control. The proposed rectifier consists of a pair of capacitors connected in series, a full bridge diode rectifier, a pair of inductors, and a pair of switching devices connected in series. While the configuration of the sinusoidal rectifier is simple in itself, it effectively reduces the reactive power and harmonics involved(IEC555-2 SC77A90 Class C) in input line current. The excellent properties of the new sinusoidal rectifier are verified by theoretical analysis and experimental results.

A Control Strategy to Obtain Sinusoidal Input Currents of Matrix Converter under Unbalanced Input Voltages

  • Nguyen, Thanh-Luan;Lee, Hong-Hee
    • Proceedings of the KIPE Conference
    • /
    • 2018.07a
    • /
    • pp.114-116
    • /
    • 2018
  • This paper presents a control strategy to achieve the balanced sinusoidal output currents, as well as sinusoidal input currents for the matrix converter (MC) under unbalanced input voltages. By regulating the modulation index of the converter according to the instantaneous input voltages, the output currents are kept balanced and sinusoidal. In order to obtain sinusoidal input currents, the input power factor angle should be dynamically calculated based on the positive and negative sequence components of the input voltages. This paper proposes a simple method to construct the expected input power factor angle without the complicated sequence component extraction of input voltages. Simulation results are given to validate the effectiveness of the proposed control strategy.

  • PDF

Optimal Control of a Three-Phase Voltage-Source PWM Converter with an Expanded Operation Region (확장된 동작 영역을 갖는 3상 전압원 PWM 컨버터의 최적 제어)

  • 민동기;안성찬;현동석;최종률
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.3 no.2
    • /
    • pp.156-164
    • /
    • 1998
  • The operation regions of a three-phase(3Ø) voltage-source(VS) PWM converter are classified in the current vector plane of the synchronous reference frame and their characteristics are explained. In the the power-factor decreasing region, the current control with unity power-factor can not give satisfactory performance to the given load because of the distortion of input current and the ripples and the steady-state errors in DC link voltage. In this paper, the derivation of the optimal current vector is proposed to solve these problems. With this, the input current can be controlled sinusoidally with available maximum power factor and the DC link voltage be the given load, resulting the expansion of the operation region of the 3Ø VS PWM converter. The validity of the proposed control method is proved by the experimental results.

Cascaded H-Bridge Five Level Inverter for Grid Connected PV System using PID Controller

  • Sivagamasundari, M.S.;Mary, P. Melba
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.16 no.4
    • /
    • pp.451-462
    • /
    • 2016
  • Photovoltaic energy conversion becomes main focus of many researches due to its promising potential as source for future electricity and has many advantages than the other alternative energy sources like wind, solar, ocean, biomass, geothermal etc. In Photovoltaic power generation multilevel inverters play a vital role in power conversion. The three different topologies, diode-clamped (neutral-point clamped) inverter, capacitor-clamped (flying capacitor) inverter and cascaded h-bridge multilevel inverter are widely used in these multilevel inverters. Among the three topologies, cascaded h-bridge multilevel inverter is more suitable for photovoltaic applications since each pv array can act as a separate dc source for each h-bridge module. This paper presents a single phase Cascaded H-bridge five level inverter for grid-connected photovoltaic application using sinusoidal pulse width modulation technique. This inverter output voltage waveform reduces the harmonics in the generated current and the filtering effort at the input. The control strategy allows the independent control of each dc-link voltages and tracks the maximum power point of PV strings. This topology can inject to the grid sinusoidal input currents with unity power factor and achieves low harmonic distortion. A PID control algorithm is implemented in Arm Processor LPC2148. The validity of the proposed inverter is verified through simulation and is implemented in a single phase 100W prototype. The results of hardware are compared with simulation results. The proposed system offers improved performance over conventional three level inverter in terms of THD.