• Title/Summary/Keyword: Control jamming

Search Result 78, Processing Time 0.028 seconds

A Time-Sharing TX/RX Control Technique for the Rejection of Feedback Noise Jamming Interference (피드백 잡음재밍 간섭제거를 위할 시분할 송수신 제어기법)

  • Jeong Un-Seob;Ra Sung-Woong
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.30 no.12C
    • /
    • pp.1201-1207
    • /
    • 2005
  • When the isolation between transmitter and receiver in Electronic Warfare equipment is not sufficient, the radiated noise jamming signal from the transmitter feeds back into the receiver and interferes with receiving radar pulse signal. Therefore pulse jamming and noise jamming can't be performed together in the same frequency bands. In this paper, we present a time-sharing TX/RX control technique of the switch matrix which inhibits the transmission of noise jamming signal by using the predicted gate of pulse train and also makes the corresponding channel filter operate to receive the radar pulse signal during the predicted gate pulse. This technique was implemented by EPLD and confirmed by experiment. The proposed technique enables the pulse jamming and the noise jamming to be simultaneously executed in multiple jamming environments.

Performance Evaluation of Vector Tracking Loop Based Receiver for GPS Anti-Jamming Environment (GPS 교란 환경에서 벡터추적루프 기반 수신기 성능평가)

  • Song, Jong-Hwa;Im, Sung-Hyuck;Jee, Gyu-In
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.19 no.2
    • /
    • pp.152-157
    • /
    • 2013
  • In this paper, we represent the implementation and performance analysis of vector tracking loop based GPS receiver for jamming environment. The vector tracking loop navigation performance is compared by simulation with conventional tracking loop. The simulation results shows that vector tracking loop is more robust than conventional tracking loop in jamming environment. The vector tracking loop can gain 2dB in jamming performance capability over a conventional GPS receiver. Also, Anti-jamming performance of INS Doppler aiding and deep integration method are compared.

A Detection Scheme for GNSS Repeat-back Jamming Signal Using Correlation Ratio Test Metric of C-PRN Signal (통합의사잡음 신호의 상관비 실험을 이용한 GNSS 재방송재밍 신호 검출기법)

  • Yoo, Seungsoo;Yeom, Dong-Jin;Jee, Gyu-In;Kim, Sun Yong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.22 no.8
    • /
    • pp.665-670
    • /
    • 2016
  • This paper proposes a repeat-back jamming signal detection scheme using a correlation ratio test metric of a combined pseudo-random noise signal for global navigation satellite systems. The correlation ratio test metric allows for the monitoring of possible distortions in the signal correlation. The proposed scheme is a modified version of the correlation ratio test metric to detect a repeat-back jamming signal in a multipath environment. Through a Monte-Carlo simulation, it is confirmed that the proposed scheme detects almost the whole case, which is received a repeat-back jamming signal under the 6 dB jamming to signal power ratio.

Power allocation-Assisted secrecy analysis for NOMA enabled cooperative network under multiple eavesdroppers

  • Nayak, V. Narasimha;Gurrala, Kiran Kumar
    • ETRI Journal
    • /
    • v.43 no.4
    • /
    • pp.758-768
    • /
    • 2021
  • In this work, the secrecy of a typical wireless cooperative dual-hop non-orthogonal multiple access (NOMA)-enabled decode-and-forward (DF) relay network is investigated with the impact of collaborative and non-collaborative eavesdropping. The system model consists of a source that broadcasts the multiplexed signal to two NOMA users via a DF relay, and information security against the eavesdropper nodes is provided by a helpful jammer. The performance metric is secrecy rate and ergodic secrecy capacity is approximated analytically. In addition, a differential evolution algorithm-based power allocation scheme is proposed to find the optimal power allocation factors for relay, jammer, and NOMA users by employing different jamming schemes. Furthermore, the secrecy rate analysis is validated at the NOMA users by adopting different jamming schemes such as without jamming (WJ) or conventional relaying, jamming (J), and with control jamming (CJ). Simulation results demonstrate the superiority of CJ over the J and WJ schemes. Finally, the proposed power allocation outperforms the fixed power allocation under all conditions considered in this work.

Extended Early-Late Phase Scheme using Combined Pseudo-Random Noise Signal to Detect GPS Repeat-Back Jamming Signals (GPS 재방송 재밍신호 검출을 위한 통합 의사잡음신호를 사용한 확장된 ELP 기법)

  • Yoo, Seungsoo;Yeom, Dong-Jin;Jee, Gyu-In;Kim, Sun Yong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.22 no.6
    • /
    • pp.483-489
    • /
    • 2016
  • This paper proposes a repeat-back jamming signal detection scheme that utilizes a combined pseudo random noise signal that is effective for processing a global positioning system (GPS) repeat-back jamming signal with the early minus late phase scheme to alleviate any existing multipath signal detection. The proposed scheme uses the combined pseudo random noise signal to treat repeat-back jamming signals like similar multipath signals and can effectively detect a repeat-back jamming signal by applying the early minus late phase scheme to a combined pseudo random noise signal. Through a Monte-Carlo simulation, the detection probability of the proposed scheme is better than the one of the conventional scheme under low jamming to signal power ratio.

A Successive Repeat-back Jamming Cancellation Scheme Using a Combined-PRN Signal to Mitigate Repeat-back Jamming for GNSS Receivers (GNSS 수신기의 C-PRN 신호 기반 재방송재밍 완화기법)

  • Yoo, Seungsoo;Yeom, Dong-Jin;Jee, Gyu-In;Kim, Sun Yong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.20 no.10
    • /
    • pp.1073-1078
    • /
    • 2014
  • In this paper, an effective repeat-back jamming (RBJ) mitigation scheme known assuccessive repeat-back jamming cancellation (SRC) is proposed for the utilization of the successive interference cancellation (SIC) algorithm which is used to mitigate the near-far effect and the multiple-access interference for code division multiple-access communication systems. The proposed scheme uses a combined pseudo-random noise (C-PRN) signal from the estimated major parameters of RBJ signals. To evaluate the performance of the proposed scheme, the root mean squared (RMS) code tracking errors are shown according to the standard deviation of the parameter estimation errors of an RBJ signal, and using the well-known major parameters estimation schemes with a C-PRN signal through Monte-Carlo simulation.

A Novel Repeat-back Jamming Detection Scheme for GNSS using a Combined Pseudo Random Noise Signal (통합의사잡음 신호를 사용한 GNSS의 재방송재밍 검출기법)

  • Yoo, Seungsoo;Yeom, Dong-Jin;Jee, Gyu-In;Kim, Sun Yong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.20 no.9
    • /
    • pp.977-983
    • /
    • 2014
  • A repeat-back jamming signal is an intentionally re-broadcasted GNSS (Global Navigation Satellite System) interference. In this paper, a novel repeat-back jamming detection scheme is proposed. The proposed scheme uses a combined pseudo random noise signal (C-PRN) and is available for a generic GNSS receiver with a single antenna. The C-PRN signal is made by combining several received pseudo random noise signals that had been transmitted from the visible GNSS satellites. Through a Monte-Carlo simulation, the detection probability of a repeat-back jamming signal detected with the proposed scheme is presented.

Protocol-Aware Radio Frequency Jamming inWi-Fi and Commercial Wireless Networks

  • Hussain, Abid;Saqib, Nazar Abbas;Qamar, Usman;Zia, Muhammad;Mahmood, Hassan
    • Journal of Communications and Networks
    • /
    • v.16 no.4
    • /
    • pp.397-406
    • /
    • 2014
  • Radio frequency (RF) jamming is a denial of service attack targeted at wireless networks. In resource-hungry scenarios with constant traffic demand, jamming can create connectivity problems and seriously affect communication. Therefore, the vulnerabilities of wireless networks must be studied. In this study, we investigate a particular type of RF jamming that exploits the semantics of physical (PHY) and medium access control (MAC) layer protocols. This can be extended to any wireless communication network whose protocol characteristics and operating frequencies are known to the attacker. We propose two efficient jamming techniques: A low-data-rate random jamming and a shot-noise based protocol-aware RF jamming. Both techniques use shot-noise pulses to disrupt ongoing transmission ensuring they are energy efficient, and they significantly reduce the detection probability of the jammer. Further, we derived the tight upper bound on the duration and the number of shot-noise pulses for Wi-Fi, GSM, and WiMax networks. The proposed model takes consider the channel access mechanism employed at the MAC layer, data transmission rate, PHY/MAC layer modulation and channel coding schemes. Moreover, we analyze the effect of different packet sizes on the proposed jamming methodologies. The proposed jamming attack models have been experimentally evaluated for 802.11b networks on an actual testbed environment by transmitting data packets of varying sizes. The achieved results clearly demonstrate a considerable increase in the overall jamming efficiency of the proposed protocol-aware jammer in terms of packet delivery ratio, energy expenditure and detection probabilities over contemporary jamming methods provided in the literature.

A Study to Efficiently Overcome GPS Jamming and GPS Spoofing by using Data Link System (데이터링크를 사용하는 체계에서 GPS 재밍(Jamming)과 GPS 기만(Spoofing)을 효과적으로 극복하기 위한 방안 연구)

  • Jee, Seungbae;Kim, Sangjun;Lee, Jungsik
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.18 no.1
    • /
    • pp.37-45
    • /
    • 2015
  • These days many systems use the gps signal to get their own position. Because it's cheap and accurate and convenient. But, the strength of gps signal is very weak and can be easily interrupted by GPS jamming and GPS spoofing. Normally, fighter can use DME, TACAN, etc to correct their position error when GPS is not working. But, many aircraft which does not have those kinds of hardware need to pay additional cost to get it. In this paper, we propose how to overcome GPS jamming and GPS spoofing by only using data link system. The main purpose of this paper is to make the data link protocol to get an exact position information of own unit at gps error environment.

Q Learning MDP Approach to Mitigate Jamming Attack Using Stochastic Game Theory Modelling With WQLA in Cognitive Radio Networks

  • Vimal, S.;Robinson, Y. Harold;Kaliappan, M.;Pasupathi, Subbulakshmi;Suresh, A.
    • Journal of Platform Technology
    • /
    • v.9 no.1
    • /
    • pp.3-14
    • /
    • 2021
  • Cognitive Radio network (CR) is a promising paradigm that helps the unlicensed user (Secondary User) to analyse the spectrum and coordinate the spectrum access to support the creation of common control channel (CCC). The cooperation of secondary users and broadcasting between them is done through transmitting messages in CCC. In case, if the control channels may get jammed and it may directly degrade the network's performance and under such scenario jammers will devastate the control channels. Hopping sequences may be one of the predominant approaches and it may be used to fight against this problem to confront jammer. The jamming attack can be alleviated using one of the game modelling approach and in this proposed scheme stochastic games has been analysed with more single users to provide the flexible control channels against intrusive attacks by mentioning the states of each player, strategies ,actions and players reward. The proposed work uses a modern player action and better strategic view on game theoretic modelling is stochastic game theory has been taken in to consideration and applied to prevent the jamming attack in CR network. The selection of decision is based on Q learning approach to mitigate the jamming nodes using the optimal MDP decision process