• Title/Summary/Keyword: Control Speed

Search Result 9,545, Processing Time 0.047 seconds

Sensorless speed control of Permanent Magnet Synchronous Motor by an Improved Sliding Mode Observer (개선된 슬라이딩 모드 관측기에 의한 영구자석 동기전동기의 센서리스 제어)

  • Ryu Sung-Lay;Kim Ji-Hyun;Lee In-Woo
    • Proceedings of the KIPE Conference
    • /
    • 2006.06a
    • /
    • pp.485-487
    • /
    • 2006
  • Speed and torque controls of permanent magnet synchronous motors are usually attained by the application of position and speed sensors. However, speed and position sensors require the additional mounting space, reduce the reliability in harsh environments and increase the cost of a motor. Therefore, many studies have been performed for the elimination of speed and position sensors. This paper investigates an Improved sliding mode observer for the speed sensorless control of a permanent magnet synchronous motor. The proposed control strategy is the sliding mode observer with a variable boundary layer for a low-chattering and fast-reponse control. The proposed algorithm is verified through the simulation and experimentation.

  • PDF

Development of A Feed Shaft Driving System Using The Fifth Wheel as a Speed Sensor

  • Kim, J.H.;Kim, K.U.
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 1996.06c
    • /
    • pp.469-477
    • /
    • 1996
  • In order to maintain a constant ratio between the ground wheel and fed shaft of planters, a feedback control unit was designed to drive the feed shaft in proportional to the ground speed. The fifth wheel was used as a ground speed sensor for the control unit. Using this control unit a feed shaft driving system was developed and tested both in the laboratory and field to evaluate it performance . The test results showed that the system drove the feed shaft in proportional to the ground speed in the normal planting speed range of 0.5 -0.8m/s with an error of less than 5%.

  • PDF

MRAS Based Sensorless Speed Control of Permanent Magnet Synchronous Motor (MRAS에 의한 영구자석 동기전동기의 센서리스 속도제어)

  • 김영삼;권영안
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.52 no.11
    • /
    • pp.541-547
    • /
    • 2003
  • Speed and torque controls of permanent magnet synchronous motors are usually attained by the application of position and speed sensors. However, speed and position sensors require the additional mounting space, reduce the reliability in harsh environments and increase the cost of a motor. Therefore, many studies have been peformed for the elimination of speed and position sensors. This paper investigates a novel speed sensorless control of a permanent magnet synchronous motor. The proposed control strategy is based on the MRAS(Model Reference Adaptive System) using the state observer model with the current error feedback and the magnet flux model as two models for the back-emf estimation. The proposed algorithm is verified through the simulation and experiment.

Improvement of Speed Control Performance using Acceleration Feedforward and Incrtia Identification for the Induction Motor (관성능률 추정과 가속도 전향보상을 이용한 유도전동기의 속도제어 성능향상)

  • 이재옥;김상훈
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.6 no.1
    • /
    • pp.90-97
    • /
    • 2001
  • In this paper, a novel speed control strategy using an acceleration feedforward compensation by the estimation of the system inertia is proposed. With the proposed method, the enhanced speed control performance can be achieved and the speed response against the disturbance torque can be improved for the vector-controled induction motor drive systems in which the bandwidth of the speed controller cannot be made large enough. The simulation and experimental results for induction motor drive systems confirm the validity of the proposed strategy.

  • PDF

Vector Control for Speed Estimate of Hyperstable MRAS (Hyperstable MRAS 방식의 속도 추정을 위한 벡터제어)

  • Seo Young-Soo;Kim Eun-Gi;Kim Yong-Ju;Kim Young-Jin
    • Proceedings of the KIPE Conference
    • /
    • 2001.07a
    • /
    • pp.409-412
    • /
    • 2001
  • When the vector control, which does not need a speed signal from a mechanical speed sensor, it is possible to reduce the cost of the control equipment and to improve the control performance in many industrial application. In this paper, describes a rotor speed estimate method of induction motor based on the theory of counter EMF MRAS. This method eliminated the pure integrator. and we can be expected to rapid responsibility of the speed Identification. Therefore, we improve the initial condition of the integrator and drift problem. The stability of speed estimator is proved on the basis of hyperstability theory. In order to confirm the performance of the proposed system. Simulation and experiment is performed.

  • PDF

Sensorless Vector Control of Induction Motors for Wind Energy Applications Using MRAS and ASO

  • Jeong, Il-Woo;Choi, Won-Shik;Park, Ki-Hyeon
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.3
    • /
    • pp.873-881
    • /
    • 2014
  • Speed sensorless modes of operation are becoming standard solution in the area of electric drives. This paper presents flux estimator and speed estimator for the speed sensorless vector control of induction motors. The proposed sensorless methods are based on the model reference adaptive system (MRAS) observer and adaptive speed observer (ASO). The proposed speed estimation algorithm can be employed in the power control of grid connected induction generator for wind power applications. Two proposed schemes are verified through computer simulation PSIM and compared their simulation results.

Study on Vibration Characteristics after Applying Variable Speed Control to Constant Speed Fans used in a Power Plant (발전소 통풍계통의 가변속 적용 후 진동특성에 관한 연구)

  • Cho, C.W.;Song, O.S.;Yang, K.H.;Kim, G.Y.;Cho, S.T.;Moon, H.D.
    • Journal of Power System Engineering
    • /
    • v.13 no.6
    • /
    • pp.88-94
    • /
    • 2009
  • In this paper, vibration characteristics after applying variable speed control to fans with a rated speed used in a power plant are studied by performing experiments and analyzing finite element models. Then the campbell diagram is presented to verify the reason of the abnormal vibration measured from fan structure during variable operation of Forced Draft Fan & Induced Draft Fan. According to results, it is found that amplitude of acceleration increases abruptly when a 2X harmonic component meets the natural frequency of fan rotor. Therefore it is very important thing that investigate exactly dynamic characteristics for the rotor at variable speed zone before applying variable speed control to a rotor with a rated speed.

  • PDF

Speed Sensorless Control of an Induction Motor using Fuzzy Speed Estimator (퍼지 속도 추정기를 이용한 유도전동기 속도 센서리스 제어)

  • Choi, Sung-Dae;Kim, Lark-Kyo
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.1
    • /
    • pp.183-187
    • /
    • 2007
  • This paper proposes Fuzzy Speed Estimator using Fuzzy Logic Controller(FLC) as a adaptive law in Model Reference Adaptive System(MRAS) in order to realize the speed-sensorless control of an induction motor. Fuzzy Speed Estimator estimates the speed of an induction motor with a rotor flux of the reference model and the adjustable model in MRAS. Fuzzy logic controller reduces the error of the rotor flux between the reference model and the adjustable model using the error and the change of error of the rotor flux as the input of FLC. The experiment is executed to verify the propriety and the effectiveness of the proposed speed estimator.

New Speed Detection Method for the Improvement of the Speed Detection Characteristics in the Low Speed Region (저속영역의 속도검출특성 개선을 위한 새로운 속도검출방법)

  • Baek, S.K.;Min, J.J.;Lee, J.W.
    • Proceedings of the KIEE Conference
    • /
    • 1997.11a
    • /
    • pp.476-478
    • /
    • 1997
  • A new speed detection method using low resolution incremental encoders, especially excellent in the low speed region and in the transient state, is proposed. The half period error of an incremental encoder is greater than the period error. So it's not recommended to quadruple the number of pulses per revolution, because it increase the ripple of speed. To overcome this restriction a speed detection, method has been proposed. But it requires so many latch circuits. Therefore we propose a new speed detection method that has different concept and has fewer latch circuits.

  • PDF

A Sensorless Speed Control of a Permanent Magnet Synchronous Motor that the Estimated Speed is Compensated by using an Instantaneous Reactive Power (순시무효전력을 이용하여 추정속도를 보상한 영구자석 동기전동기의 센세리스 속도 제어)

  • 최양광;김영석;전병호
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.52 no.11
    • /
    • pp.577-585
    • /
    • 2003
  • This paper proposes a new speed sensorless control method of a permanent magnet synchronous motor using an instantaneous reactive power. In the proposed algorithm, the line currents are estimated by a observer and the estimated speed can be yielded from the voltage equation because the information of speed is included in back emf. But the speed estimation error between the estimated and the real speeds is occured by errors due to measuring the motor parameters and sensing the line current and the input voltage. To minimize the speed estimation error, the estimated speed is compensated by using an instantaneous reactive power. In this paper, the proposed algorithm is not affected by mechanical motor parameters because the mechanical equation is not used. The effectiveness of algorithm is confirmed by the experiments.