• Title/Summary/Keyword: Control Rule Base

Search Result 190, Processing Time 0.024 seconds

On Designing A Fuzzy-Neural Network Control System Combined with Genetic Algorithm (유전알고리듬을 결합한 퍼지-신경망 제어 시스템 설계)

  • 김용호;김성현;전홍태;이홍기
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.32B no.8
    • /
    • pp.1119-1126
    • /
    • 1995
  • The construction of rule-base for a nonlinear time-varying system, becomes much more complicated because of model uncertainty and parameter variations. Furthemore, FLC does not have an ability of adjusting rule- base in responding to some sudden changes of control environments. To cope with these problems, an auto-tuning method of the fuzzy rule-base is required. In this paper, the GA-based Fuzzy-Neural control system combining Fuzzy-Neural control theory with the genetic algorithm(GA), which is known to be very effective in the optimization problem, will be proposed. The tuning of the proposed system is performed by two tuning processes(the course tuning process and the fine tuning/adaptive learning process). The effectiveness of the proposed control system will be demonstrated by computer simulations using a two degree of freedom robot manipulator.

  • PDF

Rule based CAD/CAM integration for turning (Rule base방법에 의한 선반가공의 CAD/CAM integration)

  • 임종혁;박지형;이교일
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1989.10a
    • /
    • pp.290-295
    • /
    • 1989
  • This paper proposes a Expert CAPP System for integrating CAD/CAM of rotational work-part by rule based approach. The CAD/CAPP integration is performed by the recognition of machined features from the 2-D CAD data (IGES) file. Selecting functions of the process planning are performed in modularized rule base by forward chaining inference, and operation sequences are determined by means of heuristic search algorithm. For CAPP/CAM integration, post-processor generates NC code from route sheet file. This system coded in OPS5 and C language on PC/AT, and EMCO CNC lathe interfaced with PC through DNC and RS-232C.

  • PDF

Constructing Rule Base of knowledge structure for Intelligent Machine Tools (지능공작기계 지식구조의 규칙베이스 구축)

  • Lee S.W.;Kim D.H.;Lim S.J.;Song J.Y.;Lee H.K.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.10a
    • /
    • pp.954-957
    • /
    • 2005
  • In order to implement Artificial Intelligence, various technologies have been widely used. Artificial Intelligence is applied for many industrial product and machine tools are the center of manufacturing devices in intelligent manufacturing system. The purpose of this paper is to present the construction of Rule Base for knowledge structure that is applicable to machine tools. This system is that decision whether to act in accordance with machine status is support system. It constructs Rule Base of knowledge used of machine toots. The constructed Rule Base facilitates the effective operation and control of machine tools and will provide a systematic way to integrate the expert's knowledge that will apply Intelligent Machine Tools.

  • PDF

Systematic design of fuzzy rule for control vane actuator (날개구동을 위한 퍼지규칙의 조직적 설계)

  • 이석빈;김현승;서성엽;이광택;김창욱;구본순
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1993.10a
    • /
    • pp.1072-1075
    • /
    • 1993
  • To design a fuzzy controller for DC servo-motor, a systematic procedure is proposed. Fuzzy rule base is simply designed through utilizing both the PID gain and the pole-zero cancelation. The results of simulation show that the control system has good performances.

  • PDF

Rule-based controller by Modified Ziegler-Nichols tuning (개선된 Ziegler-Nichols 동조에 의한 규칙기반 PID제어기 설계)

  • Lee, Won-Hyok;Choi, Jeong-Nae;Kim, Jin-Kwon;Hwang, Hyung-Soo
    • Proceedings of the KIEE Conference
    • /
    • 1998.07b
    • /
    • pp.775-777
    • /
    • 1998
  • The Ziegler-Nichols parameter tuning has been widely known as a fairly heuristic method to good determine setting of PID controllers, for a wide range of common industrial processes. We extract process knowledge required for rule base controller through tuning experiment and simulation study, such as set point weighting and normalised gain and dead time of process. In this paper, we presents a rule base PID controller by extracted process knowledge and the modified Ziegler-Nichols tuning. Computer simulation are provided demonstrate the feasibility of this approach.

  • PDF

Fuzzy Rule Optimization Using a Multi-population Genetic Algorithm (다중 개체군 유전자 알고리즘을 이용한 퍼지 규칙 최적화)

  • Lou, See-Yul;Chang, Won-Bin;Kwon, Key-Ho
    • Journal of the Korean Institute of Telematics and Electronics C
    • /
    • v.36C no.8
    • /
    • pp.54-61
    • /
    • 1999
  • In this paper, we apply one of modified Genetic Algorithms, a Multi-population Genetic Algorithm(MGA) that improves the genetic diversity to determine the fuzzy rule base and the shape of membership functions. The generation of the fuzzy rule base for fuzzy control, generally, depends on expert's experience. We suggest a new evaluation function to optimize fuzzy rule base. Simulation shows that the proposed method has good result.

  • PDF

Optimal Design Method of Quantization of Membership Function and Rule Base of Fuzzy Logic Controller using the Genetic Algorithm (유전자 알고리즘을 이용한 퍼지논리 제어기 소속함수의 양자화와 제어규칙의 최적 설계방식)

  • Chung Sung-Boo
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.9 no.3
    • /
    • pp.676-683
    • /
    • 2005
  • In this paper, we proposed a method that optimal values of fuzzy control rule base and quantization of membership function are searched by genetic algorithm. Proposed method searched the optimal values of membership function and control rules using genetic algorithm by off-line. Then fuzzy controller operates using these values by on-line. Proposed fuzzy control system is optimized the control rule base and membership function by genetic algorithm without expert's knowledge. We investigated proposed method through simulation and experiment using DC motor and one link manipulator, and confirmed the following usefulness.

Self-organizing fuzzy controller using data base (데이타 베이스를 이용한 자기 구성 퍼지 제어기)

  • 윤형식;이평기;전기준
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1991.10a
    • /
    • pp.579-583
    • /
    • 1991
  • A fuzzy logic controller with rule modification capability is proposed to overcome the difficulty of obtaining control rules from the human operators. This new SOC algorithm modifies control rules by a fuzzy inference machine utilizing data base. Computer simulation results show good performances on both a linear system and a nonlinear system.

  • PDF

Rule-based Process Control System for multi-product, small-sized production (다품종 소량생산 공정을 위한 규칙기반 공정관리 시스템)

  • Im, Kwang-Hyuk
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.15 no.1
    • /
    • pp.47-57
    • /
    • 2010
  • There have been many problems to apply SPC(Statistical Process Control) which is a traditional process control technology to the process of multi-product, small-sized production because a machine in the process manufactures small numbers, but various kinds of products. Therefore, we need the new process control system that can flexibly control the process by setting up the SPEC rules and the KNOWHOW rules. The SPEC rule contains the combination of diverse conditions to specify the characteristics of various products. The KNOWHOW rule is based on engineers' know-how. The study suggests the Rule-base Process Control that can be optimized to the multi-product, small-sized production. It was validated in the process of semiconductor production.

An intelligent fuzzy theory for ocean structure system analysis

  • Chen, Tim;Cheng, C.Y.J.;Nisa, Sharaban Tahura;Olivera, Jonathan
    • Ocean Systems Engineering
    • /
    • v.9 no.2
    • /
    • pp.179-190
    • /
    • 2019
  • This paper deals with the problem of the global stabilization for a class of ocean structure systems. It is well known that, in general, the global asymptotic stability of the ocean structure subsystems does not imply the global asymptotic stability of the composite closed-loop system. The classical fuzzy inference methods cannot work to their full potential in such circumstances because given knowledge does not cover the entire problem domain. However, requirements of fuzzy systems may change over time and therefore, the use of a static rule base may affect the effectiveness of fuzzy rule interpolation due to the absence of the most concurrent (dynamic) rules. Designing a dynamic rule base yet needs additional information. In this paper, we demonstrate this proposed methodology is a flexible and general approach, with no theoretical restriction over the employment of any particular interpolation in performing interpolation nor in the computational mechanisms to implement fitness evaluation and rule promotion.