• Title/Summary/Keyword: Control Mode

Search Result 5,476, Processing Time 0.046 seconds

Modified Sliding Mode Control of Structures Using MR Dampers (MR 감쇠기를 이용한 구조물의 변형된 슬라이딩 모드 제어)

  • 민경원;정진욱
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.12 no.3
    • /
    • pp.243-250
    • /
    • 2002
  • Semi-active control devices have received significant attention in recent Years because they offer the adaptability of active-control devices without requiring the associated large power sources. Magnetorheological(MR) dampers are semiactive control devices that use MR fluids to produce controllable dampers. This paper applies sliding mode control method using target variation rate of Lyapunov function for the control of structures by use of MR dampers. The three-story building model under earthquake excitation is analyzed by installing a MR damper in the first-story. The performance of semi-active controllers designed by clipped-optimal algorithm and modified sliding mode control algorithm is compared to the performance of passive-type MR dampers. The results indicate that semi-active controllers achieve a greater reduction of responses than passive-type system and especially the controller by modified sliding mode control method shows a good applicability in the view of response control and control force.

Controls Methods Review of Single-Phase Boost PFC Converter : Average Current Mode Control, Predictive Current Mode Control, and Model Based Predictive Current Control

  • Hyeon-Joon Ko;Yeong-Jun Choi
    • Journal of the Korea Society of Computer and Information
    • /
    • v.28 no.12
    • /
    • pp.231-238
    • /
    • 2023
  • For boost PFC (Power Factor Correction) converters, various control methods are being studied to achieve unity power factor and low THD (Total Harmonic Distortion) of AC input current. Among them, average current mode control, which controls the average value of the inductor current to follow the current reference, is the most widely used. However, nowadays, as advanced digital control becomes possible with the development of digital processors, predictive control of boost PFC converters is receiving attention. Predictive control is classified into predictive current mode control, which generates duty in advance using a predictive algorithm, and model predictive current control, which performs switching operations by selecting a cost function based on a model. Therefore, this paper simply explains the average current mode control, predictive current mode control, and model predictive current control of the boost PFC converter. In addition, current control under entire load and disturbance conditions is compared and analyzed through simulation.

Application of Perturbation Estimation using Fractional-Order Hold Technique to Sliding Mode Control (Fractional-Order Hold기법을 이용한 섭동 추정기의 슬라이딩 모드 제어에 적용)

  • Nam Yun Joo;Lee Yuk-Hyung;Park Myeong-Kwan
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.23 no.1 s.178
    • /
    • pp.121-128
    • /
    • 2006
  • This paper deals with the application of enhanced perturbation estimation (SMCEPE) to sliding mode control of a dynamic system in the presence of perturbations including external disturbances, unpredictable parameter variations, and unstructured dynamics. Compared to conventional sliding mode control (SMC) and sliding mode control with perturbation estimation (SMCPE), the proposed one can offer robust control performances under serious control conditions, such as fast dynamic perturbations and slow loop-closure speeds, without a priori knowledge on upper bounds of perturbations. The perturbation estimator in SHCEPE also has more adaptability owing to the fractional-order hold technique. The effectiveness and superiority of the proposed control strategy are demonstrated by a series of simulations on the position tracking control of a two-link robot manipulator.

Sliding Mode control of Manipulator Using Neural Network (신경회로망을 이용한 매니플레이터의 슬라이딩모드 제어)

  • Yang, Ho-Seog;Lee, Gun-Bok
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.15 no.5
    • /
    • pp.114-122
    • /
    • 2006
  • This paper presents a new control scheme that combines a sliding mode control and a neural network. In the proposed sliding mode control, a continuous control is employed removing the switching phenomena and the equivalent control within the boundary layer is estimated through on-line teaming of the neural network. The performances of the proposed control are compared with off-line neural network and on-line neural sliding mode control by computer simulation. The simulation results show that the proposed control reduces high frequency chattering and tracking error in example of the two link manipulator.

Sliding Mode Control with RLSN Predictor-Based Perturbation Estimation (RLSN 예측기 기반 섭동 추정기를 갖는 슬라이딩 모드 제어)

  • Nam Yun-Joo;Lee Yuk-Hyung;Park Myeong-Kwan
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.8 s.251
    • /
    • pp.880-888
    • /
    • 2006
  • This paper presents the sliding mode control with the perturbation estimator for a nonlinear control system in the presence of perturbations including external disturbances, unpredictable parameter variations, ana unstructured dynamics. The proposed perturbation estimator is based on the Recursive Linear Smoothed Newton predictive algorithm so that it is effective to attenuate an undesired noise in high frequency band and to predict the present perturbation signal from the previous ones. Compared to conventional sliding mode control (SMC) and sliding mode control with perturbation estimation (SMCPE) introduced by Elmali and Olgac, the control algorithm proposed in this study can offer better tracking control performances and more feasible estimation characteristics. The effectiveness and superiority of the proposed control strategy are demonstrated by a series of simulations on the position tracking control of a simple two-link robot manipulator subject to velocity feedback signals including white noises.

Performance Improvement of Voltage-mode Controlled Interleaved Buck Converters

  • Veerachary Mummadi
    • Journal of Power Electronics
    • /
    • v.5 no.2
    • /
    • pp.104-108
    • /
    • 2005
  • This paper presents the performance improvement of voltage-mode controlled interleaved synchronous buck converters. This is a voltage-mode controlled scheme, where the controllers do not need an external saw-tooth generator for PWM generation and the loop design is easier. The controller implementation requires only a single error amplifier and gives almost current mode control performance. The control scheme uses voltage feedback with two loops similar to current mode control: one for the slow outer loop and the other for the faster inner PWM control loop. To improve the performance of the converter system a coupled inductor is used. This coupled inductor reduces the magnetic size and also improves the converter's transient performance without increasing the steady-state current ripple. The effectiveness of the proposed control scheme is demonstrated through PSIM simulations.

Fuzzy Sliding Mode Control for a Hydraulic Elevator Controlled by Inverter

  • Han, Gueon-Sang;Park, Jae-Sam;Ahn, Hyun-Sik;Kim, Do-Hyun
    • Proceedings of the IEEK Conference
    • /
    • 2002.07c
    • /
    • pp.1487-1490
    • /
    • 2002
  • In this paper, a design methodology of fuzzy sliding mode control scheme for a hydraulic elevator controlled by inverter is presented. The proposed scheme uses a fuzzy sliding mode controller(FSMC), which is designed based on the similarity between the fuzzy logic control(FLC) and the sliding mode control(SMC). The proposed method has advantages that the stability and the robustness of the FLC are proved and ensured by the sliding mode control law, and the computation burden could be reduced greatly. The validity and the effectiveness of the proposed control method have been shown through the real world industrial application results.

  • PDF

A Study of Average Current Mode Control Boost Converter for Space Craft Power System (인공위성용 전원을 위한 평균전류형 제어 BOOST 컨버터에 관한 연구)

  • Kim, H.J.;Kim, Y.T.;Kim, I.G.;Choi, J.M.
    • Proceedings of the KIEE Conference
    • /
    • 1993.07b
    • /
    • pp.886-888
    • /
    • 1993
  • Recently current mode control is widely adopted in switching power converter because of inherent stablity and ability of parallel operating. There are several ways in current mode control. One of them, peak current control is chiefly employed. Peak current mode control converter usually senses and controls peak inductor current. But there is peak-to-average current errors. Therefore peak current control needs compensation ramp correcting the errors. Average current mode control eliminates these problems, and is constructed by simple structures. This paper will describe the behavior of a simple average current mode boost converter and introduce the design techniques.

  • PDF

Position Control of an Electro-hydraulic Servo System with Sliding Mode (전기유압 서보시스템의 슬라이딩 모드 위치제어)

  • Huh, Jun Young
    • Journal of Drive and Control
    • /
    • v.18 no.3
    • /
    • pp.16-22
    • /
    • 2021
  • The variable structure controller has the characteristic that while in sliding mode, the system moves along the switching plane in the vicinity of the switching plane, so it is robust to the parameter fluctuations of the plant. However, a controller based on a variable structure may not meet the desired performance when it is commanded to track any input or exposed to disturbances. To solve this problem, a sliding mode controller based on the IVSC approach excluding an integrator is proposed in this study. The proposed sliding mode control was applied to the position control of a hydraulic cylinder piston. The sliding plane was determined by the pole placement and the control input was designed to ensure the existence of the sliding mode. The feasibility of the modeling and controller was reviewed by comparing it with a conventional proportional control through computer simulation using MATLAB software and experiment in the presence of significant plant parameter fluctuations and disturbances.

Disturbance observer based adaptive sliding mode control for power tracking of PWRs

  • Hui, Jiuwu;Yuan, Jingqi
    • Nuclear Engineering and Technology
    • /
    • v.52 no.11
    • /
    • pp.2522-2534
    • /
    • 2020
  • It is well known that the model of nuclear reactors features natural nonlinearity, and variable parameters during power tracking operation. In this paper, a disturbance observer-based adaptive sliding mode control (DOB-ASMC) strategy is proposed for power tracking of the pressurized-water reactor (PWR) in the presence of lumped disturbances. The nuclear reactor model is firstly established based on point-reactor kinetics equations with six delayed neutron groups. Then, a new sliding mode disturbance observer is designed to estimate the lumped disturbance, and its stability is discussed. On the basis of the developed DOB, an adaptive sliding mode control scheme is proposed, which is a combination of backstepping technique and integral sliding mode control approach. In addition, an adaptive law is introduced to enhance the robustness of a PWR with disturbances. The asymptotic stability of the overall control system is verified by Lyapunov stability theory. Simulation results are provided to demonstrate that the proposed DOB-ASMC strategy has better power tracking performance than conventional sliding mode controller and PID control method as well as conventional backstepping controller.