• Title/Summary/Keyword: Control Flow Analysis

Search Result 2,173, Processing Time 0.024 seconds

Development of Flow Control Block for Hydraulic System of Tunnel Boring Machine (터널 굴착기 유압시스템용 유량 제어 블록 개발)

  • Lee, Jae-Dong;Lim, Sang-Jin
    • Journal of the Korean Society of Mechanical Technology
    • /
    • v.20 no.6
    • /
    • pp.929-935
    • /
    • 2018
  • This paper develops a flow control block for a hydraulic system of a tunnel boring machine. The flow control block is a necessary component to ensure stability in the operation of the hydraulic system. In order to know the pressure distribution of the flow control block, the flow analysis was performed using the ANSYS-CFX. It was confirmed that the pressure and flow rate were normally supplied to the hydraulic system even if one of the four ports of the flow control block was not operated. In order to evaluate the structural stability of the flow control block, structural analysis was performed using the ANSYS WORKBENCH. As a result, the safety factor of the flow control block is 1.54 and the structural stability is secured.

A Method to Construct Control Flow Graphs for Java Programs by Decoupling Exception Flow Analysis from Normal Flow Analysis (예외 흐름 분석을 정상 흐름 분석과 분리하여 Java프로그램에 대한 제어 흐름 그래프를 생성하는 방법)

  • 조장우;창병모
    • Journal of KIISE:Software and Applications
    • /
    • v.31 no.5
    • /
    • pp.643-650
    • /
    • 2004
  • Control flow graph is used for Performing many Program-analysis techniques, such as data-flow and control-dependence analysis, and software-engineering techniques, such as program slicing and testings. For these analyses to be safe and useful, the CFG should incorporate the exception flows that are induced by exceptions. In previous research to construct control flow graph, normal flows and exception flows are computed at the same time, since these two flows are known to be mutually dependent. By investigating realistic Java programs, we found that the cases when these two flows are mutually dependent rarely happen. So, we can decouple exception flow analysis from normal flow analysis. In this paper we propose an analysis that estimates exception flows. We also propose exception flow graph to represent exception flows. And we show that the control flow graph that accounts for exception flows can be constructed by merging exception flow graph onto normal control flow graph.

Liner Analysis of IMV Proportional Flow Control Valve Static Characteristics (IMV 비례 유량제어밸브 정특성 선형해석)

  • Jung, Gyuhong
    • Journal of Drive and Control
    • /
    • v.16 no.4
    • /
    • pp.56-64
    • /
    • 2019
  • Recently, as the environmental regulation for earth moving equipment has been tightened, advanced systems using electronic control have been introduced for energy savings. An IMV(Independent Metering Valve), which consists of four 2-way valves, is one of the electro-hydraulic control systems that provides more flexible controllability and potential for energy savings in excavators, when compared to the conventional 4-way spool valve system. To fully realize an IMV, a two-stage bi-directional flow control valve which can regulate the large amount of flow in both directions, should be developed in advance. A simple design that allows proportional flow control to apply the pilot pressure from the current-controlled solenoid to the spring loaded flow control spool and thus valve displacement, is proportional to the solenoid current. However, this open-loop type valve is vulnerable to flow force which directly affects the valve displacement. Force feedback servo of which the position loop is closed by the feedback spring which interconnects the solenoid valve and flow control spool, could compensate for the flow force. In this study, linearity for the solenoid current input and robustness against load pressure disturbance is investigated by linear analysis of the static nonlinear equations for the IMV proportional flow control valve with feedback spring. Gains of the linear system confirm the performance improvement with the feedback spring design.

Static Analysis of Dedicated Proportional Flow Control Valve for IMV (굴삭기 IMV용 비례 유량제어밸브 정특성 해석)

  • Jung, Gyuhong
    • Journal of Drive and Control
    • /
    • v.15 no.4
    • /
    • pp.39-47
    • /
    • 2018
  • Recently, as environmental regulations for earth-moving equipment have been tightening, advanced systems such as electronic control, have been introduced for energy savings. An IMV (Independent Metering Valve) consisting of four 2-way valves, is an electro-hydraulic control systems that provides more flexible controllability, and potential for energy savings in excavators, when compared to the conventional 4-way spool valve system. To fully maximize use of an IMV, the bi-directional flow control valve that can regulate a large amount of flow in both directions, should be adopted. The hydraulic circuit of an IMV applied to an excavator from an overseas construction equipment company, reveals the flow control valve with the compound of proportional solenoid valve for first stage, and 2-way spool valve for the second stage. Moreover, the two spools are interconnected by a feedback spring, presumed to compensate for flow force acting on the second stage spool. This paper addresses the static analysis of flow control valve in an IMV to investigate the improvement of robustness, against flow force by the feedback spring. From the steady-state analysis of flow control valve model, it can be concluded that the feedback spring facilitates maintaining linearity of spool displacement for control input, and relatively constant flow for load disturbance.

ANALYSIS OF FLOW CHARACTERISTIC FOR CONE DISC TYPE CONTROL VALVE (콘 디스크 형 컨트롤 밸브의 유동특성 연구)

  • Ko, S.H.;Kwack, Y.K.;Lee, S.H.;Kang, M.K.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2007.10a
    • /
    • pp.177-180
    • /
    • 2007
  • A three dimensional numerical analysis has been made for the cone disk control valve and the flat disk control valve. The simulation of the incompressible flow in the each control vale are performed by using the commercial code. Six flow cases of each control valve are investigated.

  • PDF

Development of Flow Control Valve Using MR Fluid (MR유체를 이용한 유량제어 밸브)

  • Lee, Hyung-Don;Bae, Hyung-Sub;Lee, Yuk-Hyung;Park, Myeong-Kwan
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.17 no.9
    • /
    • pp.888-891
    • /
    • 2011
  • This paper presents development of flow control valve using MR fluid. Generally, since the apparent viscosity of MR fluids is adjusted by applying magnetic fields, the MR valves can control high level fluid power without any mechanical moving parts. In this paper, flow control valve using MR fluid on the behavior of the magnetic field influence on the numerical analysis of more accurate electromagnetic parameters were obtained, even if when magnetic field apply inside of surrounding MR fluid from electromagnet, more realistic designing way analysis of characteristic of whole magnetic field distribution is suggested by surrounding magnetic material. Also, comparison of flow rate inlet and outlet, behavior of MR fluid in experiments proposed. A new type of flow control valve using MR fluid is proposed by analysis of behavior of MR fluid in experiments.

Flow/solid Interaction Analysis for Design of Medical CSF-Flow Control Valve (의료용 CSF 제어 밸브 설계를 위한 유동/구조 상호작용 해석)

  • Won C. S.;Hur N.;Lee C .S.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2000.05a
    • /
    • pp.21-26
    • /
    • 2000
  • Pressure-flow control characteristics of a commercially available cerebrospinal flow(CSF) control shunt valve was tested using fluid-solid interaction analysis. Pre-stress of the valve diaphragm(membrane) was computed for proper valve opening. The results were ir good agreements with the valve specification listed in the commercially available CSF control valve. The results of the study can be effectively used to design variety of CSF control shunt valves.

  • PDF

A Flow/structure Interaction Analysis for the Design of Medical CSF-Flow Control Valve (의료용 CSF 제어 밸브 설계를 위한 유동/구조 상호작용 해석)

  • Won C. S.;Hur N.;Lee C. S.
    • Journal of computational fluids engineering
    • /
    • v.6 no.1
    • /
    • pp.40-46
    • /
    • 2001
  • Pressure-flow control characteristics of a commercially available cerebrospinal flow(CSF) control shunt valve was studied using flow/structure interaction analyses. Pre-stress of the valve diaphragm(membrane) was accounted for the simulation of an actual valve. The present results were in good agreement with the valve specification listed in the commercially available CSF control valve. The flow/structure interaction analysis of the present study can be effectively used to design a variety of CSF control shunt valves.

  • PDF

Numerical Analysis on Flow Characteristics of High Pressure Drop Control Valves with Anti-Cavitation Trim (Anti-Cavitation Trim을 갖는 고차압 제어밸브의 유동특성에 관한 수치해석)

  • Ahn, Y.J.;Kim, B.J.;Shin, B.R.
    • The KSFM Journal of Fluid Machinery
    • /
    • v.10 no.4
    • /
    • pp.61-70
    • /
    • 2007
  • Numerical analysis of three dimensional incompressible turbulent flows in LNG marine high pressure drop control valves was carried out by using the CFD-ACE from ESI-Group. In this study, flow characteristics of control valves with complex flow fields including cavitation effect were investigated. Simulation was performed on five models of control valve that had different orifice diameters of anti-trim and the size of valve. Comparing newly designed control valves for controling the occurrence of cavitation with the conventional valve, new valves showed a improved flow pattern with almost no cavitation.

A Study on the Design of Flow Control Valve Attached to Vane Pump for Power Steering (파워 스티어링용 베인 펌프 유량 제어부 설계에 관한 연구)

  • 이윤태
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.9 no.5
    • /
    • pp.87-95
    • /
    • 2000
  • The numerical analysis and the experiments are carried out to develop the design program for the flow control valve attached to the vane pump for power steering. The factors affecting the flow rate characteristics are analyzed by the experiments and the numerical analysis. The results are summarized as follows; (1) the main factors affecting to the first and second control flow rate are the diameter of big and small rod of the spool. (2) the cut off is mainly affected by the main spring constant, the initial displacement of main spring and the small diameter of the spool. (3) the dropping slope characteristics are decided by the chamfer of spool and the dynamic characteristics of the spool.

  • PDF