• Title/Summary/Keyword: Contribution ratio of soil

Search Result 54, Processing Time 0.027 seconds

Investigation of slope reinforcement with drilled shafts in colluvium soils

  • Lia, An-Jui;Wang, Wei-Chien;Lin, Horn-Da
    • Geomechanics and Engineering
    • /
    • v.31 no.1
    • /
    • pp.71-86
    • /
    • 2022
  • In Taiwan, an efficient approach for enhancing the stability of colluvium slopes is the drilled shaft method. For slopes with drilled shafts, the soil arching effect is one of the primary factors influencing slope stability and intertwines to the failure mechanism of the pile-soil system. In this study, the contribution of soil arching effect to slope stability is evaluated using the FEM software (Plaxis 3D) with the built-in strength reduction technique. The result indicates the depth of the failure surface is influenced by the S/D ratio (the distance to the diameter of piles), which can reflect the contribution of the soil arching effect to soil stability. When α (rock inclination angles)=β (slope angles) is considered and the S/D ratio=4, the failure surface of the slope is not significantly influenced by the piles. Overall, the soil arching effect is more significant on α=β, especially for the steep slopes. Additionally, the soil arching effect has been included in the proposed stability charts. The proposed charts were validated through two case studies, including that of the well-known Woo-Wan-Chai field in Taiwan. The differences in safety factor (FoS) values between the referenced literature and this study was approximately 4.9%.

$\delta^{15}$N Analysis for Interpretation of Nitrogen pollution Source and Contribution in Agricultural Watersheds (농촌유역의 질소 오염원과 기여도 해석을 위한 $\delta^{15}$N 분석(지역환경 \circled1))

  • 홍영진;권순국
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2000.10a
    • /
    • pp.513-518
    • /
    • 2000
  • It has been acknowledged that fertilizer, natural soil nitrogen and animal waste, municipal waste have different mass ratio of nitrogen which is presented as a symbol of $\delta^{15}$N. and that the values of $\delta^{15}$N for fertilizer and natural soil nitrogen and animal waste are placed less than +5$\textperthousand$ and higher than +10$\textperthousand$, respectively. thus, Nitrogen pollution sources and contribution can be interpreted in watershed through $\delta^{15}$N analysis and then, analysis is performed with Kjeldhl-Dumas method. In this study, The values of $\delta^{15}$N are between +1.46$\textperthousand$ and +8.97$\textperthousand$, and the nitrate concentration is placed less than 3.31mg/L and higher than 0.19mg/L, respectively. Thus, this watershed is noncontamination area at the present time. But as a result of $\delta^{15}$N, contribution of natural soil nitrogen be discovered in this watershed, presently.

  • PDF

Estimating the Relative Contribution of Organic Phosphorus to Organic Matters with Various Sources Flowing into a Reservoir Via Fluorescence Spectroscopy (형광스펙트럼을 이용한 유역 하류 저수지의 유입 유기물 내 유기인 기여도 평가)

  • Mi-Hee Lee;Seungyoon Lee;Jin Hur
    • Journal of Korean Society on Water Environment
    • /
    • v.40 no.2
    • /
    • pp.67-78
    • /
    • 2024
  • The introduction of a significant amount of phosphorous into aquatic environments can lead to eutrophication, which can in turn result in algal blooms. For the effective management of watersheds and the prevention of water quality problems related to nonpoint organic matter (OM) sources, it is essential to pinpoint the predominant OM sources. Several potential OM sources were sampled from upper agricultural watersheds, such as fallen leaves, riparian reeds, riparian plants, paddy soil, field soil, riparian soil, cow manure, and swine manure. Stream samples were collected during two storm events, and the concentrations of dissolved organic carbon (DOC) and phosphorous (DOP) from these OM sources and stream samples were assessed. DOM indicators using fluorescence spectroscopy, including HIX, FI, BIX, and EEM-PARAFAC, were evaluated in terms of their relevance in discerning DOM sources during storm events. Representative DOM descriptors were chosen based on specific criteria, such as value ranges and pronounced differences between low and high-flow periods. Consequently, the spectral slope ratio (SR) paired with fluorescence index (FI) using end-member mixing analysis (EMMA) proved to be suitable for estimating the contribution of organic carbon (OC). The contribution of each organic phosphorous (OP) in stream samples was determined using the phosphorous-to-carbon (P/C) ratio in conjunction with the OC contribution. Notably, OP derived from swine manure in stream samples was found to make the most dominant contribution, ranging from 61.3% to 94.2% (average 78.1% ± 12.7%). The results of this research offer valuable insights into the selection of suitable indicators to recognize various OM sources and highlight the main sources of OP in forested-agricultural watersheds.

[ PM10 ] Concentration and Chemical Composition in a Western Region of Susan during the Spring 2003 (2003년 봄철 부산 서부지역의 PM10 농도 특성과 화학적 조성)

  • Jeon Byung-Il;Hwang Yong-Sik
    • Journal of Environmental Science International
    • /
    • v.14 no.5
    • /
    • pp.463-471
    • /
    • 2005
  • This study is designed to investigate the characteristics of $PM_{10}$ concentration and the chemical composition of heavy metallic components in the $PM_{10}$ sampled in western Busan from March to May, 2003. $PM_{10}$measurement was done during springtime of 2003, totaling 29 days: 9 days in March, 10 days in April and 10 days in May. With a sampling time of 24 hours, it started 9:00 AM on that day and ended 9:00 AM the next day. The mean contribution ratio of soil during springtime was $10.3\%$. Al had a significant correlation with Ca, Fe, Mg and Si and little correlation with Na, Ni and Zn.

Soil Microarthropods at the Kwangyang Experiment Plantation (4. Diversity of Soil Microarthropods in Relation to Environmental Factors) (서울대 광양연습림내 토양 미소 절지동물에 관한 연구 - 4. 토양 미소 절지동물과 서식환경과의 관계)

  • Kwak, Joon-Soo;Park, Joung-Sik;Park, Nou-Poung;Park, Seong-Sik;Kim, Tae-Heung;Kim, Tae-Young
    • The Korean Journal of Ecology
    • /
    • v.12 no.3
    • /
    • pp.203-208
    • /
    • 1989
  • This study was objected to figure out the soil microarthropod fauna in forests with different flora, and to elucidate how environmental factors affect the diversity of soil microarthropods. Relationships between the distribution density of soil microarthropods and environmental factors were correlated positively with organic matter and C/N ratio. By the calculation of the contribution coefficients, organic matter, amount of precipitation, C/N ratio, and soil moisture were found to be major environmental factors that affect the distribution of soil microarthropods.

  • PDF

Characteristics of Nitrogen and Carbon Isotopes on Organic Matter and River Sediments of Toil Stream in Yeongju Dam Basin (영주댐 유역 토일천 유입 유기물 및 하천 퇴적물에 대한 질소와 탄소 동위원소 특성 연구)

  • Kang, Han;Song, Hye Won;Kim, Young Hun;Kim, Jeong Jin
    • Economic and Environmental Geology
    • /
    • v.55 no.5
    • /
    • pp.439-445
    • /
    • 2022
  • Organic pollutants that contained in stream sediments have origins of mountain soil in natural and cattle manure in human activity. Nitrogen and carbon isotope analysis for mountain soil, cattle manure and stream sediment were performed for contribution evaluation of organic pollutants in Toil stream of Yeongju dam basin. Average carbon isotope ratio(δ13C) is -25.17‰, -22.34‰, and -26.39‰ for river sediments, cattle manure and mountain soil, respectively. Result of carbon isotope analysis suggests that river sediments are more affected by acid soils. Average value of the nitrogen isotope ratio (δ15N) is 9.46% for river sediment, 1.99% for mountain soil, and 19.53% for cattle manure. Result of nitrogen isotopic analysis show that contribution of cattle mature is slightly higher than that of mountain soil in Toil stream sediments.

pH Dependence of CH3Hg+-binding Sites in Humic Acid: An X-ray Absorption Study (pH에 따른 부식유기산의 메틸수은 결합 리간드 변화: X-선 흡수분석)

  • Yoon, Soh-Joung;Bleam, William F.
    • Journal of Soil and Groundwater Environment
    • /
    • v.16 no.6
    • /
    • pp.122-132
    • /
    • 2011
  • Mercury accumulates in biota mainly as methylmercury. In nature, methylmercury shows high affinity to organic matter and $CH_3Hg^+$-organic matter complexation affects the mobility and bioavailabiity of methylmercury. In this study, we examined the methylmercury binding sites in an aquatic humic acid as affected by the pH condition using Hg $L_{III}$-edge extended X-ray absorption fine structure (EXAFS). We evaluated methylmercury binding humic ligands using methylmercury-thiol, methylmerury-carboxyl, and methylmercury-amine complexation models. When $CH_3Hg^+$-to-humic reduced sulfur ratio is 0.3, we found that most of $CH_3Hg^+$ binds to thiol ligands at pH 5 and 7. At pH 7, however, some carboxyl or amine ligand contribution is observed, unlike at pH 5 where $CH_3Hg^+$ almost exclusively binds to thiol ligands. The carboxyl or amine ligand contribution may indicate that some types of thiol ligands in the natural organic matter have relatively low complexation constants or acid dissociation constants compared to those of some carboxyl or amine ligands. Analysis results indicate that ~0.2 fraction of methylmercury binds to amine or carboxyl ligands and ~0.8 to thiol ligands at pH 7.

Estimating Saturation-paste Electrical Conductivities of Rose-cultivated Soils from their Diluted Soil Extracts (절화장미 재배토양에서 희석된 토양 침출용액으로부터 포화반죽 전기전도도 추정)

  • Lee, In-Bog;Ro, Hee-Myong;Lim, Jae-Hyun;Yiem, Myoung-Soon
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.33 no.6
    • /
    • pp.398-404
    • /
    • 2000
  • We examined the effect of soil:water ratio on the equivalent concentration of individual electrolyte species and the electrical conductivities (EC) of the diluted extracts of 24 soil samples (loam or silt loam) collected from rose-cultivated plastic houses to estimate the EC of saturated soil-paste extracts (ECe) from diluted soil extracts. With increasing volume ratio of water (higher dilution), the equivalent concentrations of each electrolyte species and their sum increased. The relative contribution to the EC, however, was highest for $NO_3{^-}$, irrespective of soil:water ratio. The measured ECe was 6.36 for loam and $8.09dS\;m^{-1}$ for silt loam soils and the corresponding soil:water ratio was 0.38 and 0.50, respectively. The EC_e estimated from the EC of diluted extracts at 1:1, 1:2, or 1:5 soil:water ratios using their corresponding uniform diluted factors was lower than the measured EC_e and this difference was greater with higher dilution and EC values. Therefore, the alternative diluted factors (y) for each soil: water ratio were obtained following the definition of diluted factor and were correlated significantly with volume ratios of added water (x): y=1.55x+0.5 for loam and y=1.21x+0.48 for silt loam soils. On the other hand, correlation analyses of the EC of soil extracts (y) to the volume ratio of added water (x) on log-log scale yielded linear models: logy = -0.805logx + logb, SD of slope=0.05, b=sample specific constant, n=24). With known saturation percentage of a sample representing a group and and the EC of diluted extract of a given soil, the EC_e could be predicted using the proposed logarithmic equation.

  • PDF

Hydro-mechanical behavior of compacted silt over a wide suction range

  • Chen, Bo;Ding, Xiuheng;Gao, You;Sun, De'an;Yu, Haihao
    • Geomechanics and Engineering
    • /
    • v.22 no.3
    • /
    • pp.237-244
    • /
    • 2020
  • To achieve a wide suction range, the low suction was imposed on compacted silt specimens by the axis translation technique and the high suction was imposed by the vapor equilibrium technique with saturated salt solutions. Firstly, the results of soil water retention tests on compacted silt show that the soil water retention curves in terms of gravimetric water content versus suction relation are independent of the dry density or void ratio in a high suction range. Therefore, triaxial tests on compacted silt with constant water content at high suctions can be considered as that with constant suction. Secondly, the results of triaxial shear tests on unsaturated compacted silt with the initial void ratio of about 0.75 show a strain-hardening behavior with a slightly shear contraction and then strain-softening behavior with an obviously dilation. As the imposed suction increases, the shear strength increases up to a peak value and then decreases when the suction is beyond a special value corresponding to the peak shear strength. The residual strength increases to fair value and those at high suctions are almost independent of imposed suctions. In addition, the contribution of suction to the strength of compacted silt would not diminish even in a high suction range.

Soil and ribbed concrete slab interface modeling using large shear box and 3D FEM

  • Qian, Jian-Gu;Gao, Qian;Xue, Jian-feng;Chen, Hong-Wei;Huang, Mao-Song
    • Geomechanics and Engineering
    • /
    • v.12 no.2
    • /
    • pp.295-312
    • /
    • 2017
  • Cast in situ and grouted concrete helical piles with 150-200 mm diameter half cylindrical ribs have become an economical and effective choice in Shanghai, China for uplift piles in deep soft soils. Though this type of pile has been successful used in practice, the reinforcing mechanism and the contribution of the ribs to the total resistance is not clear, and there is no clear guideline for the design of such piles. To study the inclusion of ribs to the contribution of shear resistance, the shear behaviour between silty sand and concrete slabs with parallel ribs at different spacing and angles were tested in a large direct shear box ($600mm{\times}400mm{\times}200mm$). The front panels of the shear box are detachable to observe the soil deformation after the test. The tests were modelled with three-dimensional finite element method in ABAQUS. It was found that, passive zones can be developed ahead of the ribs to form undulated failure surfaces. The shear resistance and failure mode are affected by the ratio of rib spacing to rib diameter. Based on the shape and continuity of the failure zones at the interface, the failure modes at the interface can be classified as "punching", "local" or "general" shear failure respectively. With the inclusion of the ribs, the pull out resistance can increase up to 17%. The optimum rib spacing to rib diameter ratio was found to be around 7 based on the observed experimental results and the numerical modelling.