• Title/Summary/Keyword: Contrast-enhancement Method

Search Result 306, Processing Time 0.026 seconds

A Method for Contrast Enhancement according to Video image in Liquid Crystal Display (액정표시 장치에서 영상에 따른 콘트라스트 제어 방법)

  • 박행원;전병우;이승우;김영기
    • Proceedings of the IEEK Conference
    • /
    • 2003.11a
    • /
    • pp.477-480
    • /
    • 2003
  • This paper describes a novel method for image contrast enhancement by controlling gamma curve in AMLCD. The key idea is to automatically manipulate gamma voltage in accordance with the image data distribution. This method is applied to 17" SXGA LCD monitor module. The contrast ratio and the brightness are enhanced respectively by about 3 times and 1.7 times, by using the proposed method.

  • PDF

Contrast Enhancement Algorithm Using Singular Value Decomposition and Image Pyramid (특이값 분해와 영상 피라미드를 이용한 대비 향상 알고리듬)

  • Ha, Changwoo;Choi, Changryoul;Jeong, Jechang
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.38A no.11
    • /
    • pp.928-937
    • /
    • 2013
  • This paper presents a novel contrast enhancement method based on singular value decomposition and image pyramid. The proposed method consists mainly of four steps. The proposed algorithm firstly decomposes image into band-pass images, including basis image and detail images, to improve both the global contrast and the local detail. In the global contrast process, singular value decomposition is used for contrast enhancement; the local detail scheme uses weighting factors. In the final image composition process, the proposed algorithm combines color and luminance components in order to preserve the color consistency. Experimental results show that the proposed algorithm improves contrast performance and enhances detail compared to conventional methods.

Contrast Enhancement based on Gaussian Region Segmentation (가우시안 영역 분리 기반 명암 대비 향상)

  • Shim, Woosung
    • Journal of Broadcast Engineering
    • /
    • v.22 no.5
    • /
    • pp.608-617
    • /
    • 2017
  • Methods of contrast enhancement have problem such as side effect of over-enhancement with non-gaussian histogram distribution, tradeoff enhancement efficiency against brightness preserving. In order to enhance contrast at various histogram distribution, segmentation to region with gaussian distribution and then enhance contrast each region. First, we segment an image into several regions using GMM(Gaussian Mixture Model)fitting by that k-mean clustering and EM(Expectation-Maximization) in $L^*a^*b^*$ color space. As a result region segmentation, we get the region map and probability map. Then we apply local contrast enhancement algorithm that mean shift to minimum overlapping of each region and preserve brightness histogram equalization. Experiment result show that proposed region based contrast enhancement method compare to the conventional method as AMBE(AbsoluteMean Brightness Error) and AE(Average Entropy), brightness is maintained and represented detail information.

Exact Histogram Specification Considering the Just Noticeable Difference

  • Jung, Seung-Won
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.3 no.2
    • /
    • pp.52-58
    • /
    • 2014
  • Exact histogram specification (EHS) transforms the histogram of an input image into the specified histogram. In the conventional EHS techniques, the pixels are first sorted according to their graylevels, and the pixels that have the same graylevel are further differentiated according to the local average of the pixel values and the edge strength. The strictly ordered pixels are then mapped to the desired histogram. However, since the conventional sorting method is inherently dependent on the initial graylevel-based sorting, the contrast enhancement capability of the conventional EHS algorithms is restricted. We propose a modified EHS algorithm considering the just noticeable difference. In the proposed algorithm, the edge pixels are pre-processed such that the output edge pixels obtained by the modified EHS can result in the local contrast enhancement. Moreover, we introduce a new sorting method for the pixels that have the same graylevel. Experimental results show that the proposed algorithm provides better image enhancement performance compared to the conventional EHS algorithms.

Contrast Enhancement of Images Using APLs in an AC-PDP

  • Lee, Yong-Uk;Lee, Joo-Young;Kim, Nam-Jin;Moon, Seong-Hak
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.1483-1486
    • /
    • 2006
  • We describe the contrast enhancement of images using an APL(Average Picture Level) in an AC-PDP. A CEC(Contrast Enhancement Curve) determined by the APL was applied to enhance the contrast of images depending on the dominant gray levels. The most effective advantage of the proposed method is that it is easier to adjust the dynamic ranges to be enhanced with good quality and implement in a hardware system. The simulation result shows that the proposed method enhanced the contrast of given images significantly and kept the original brightness except the specific area of them compared to the HE(Histogram Equalization).

  • PDF

An Image Contrast Enhancement Method based on Pyramid Fusion Using BBWE and MHMD (BBWE와 MHMD를 이용한 피라미드 융합 기반의 영상의 대조 개선 기법)

  • Lee, Dong-Yul;Kim, Jin Heon
    • Journal of Korea Multimedia Society
    • /
    • v.16 no.11
    • /
    • pp.1250-1260
    • /
    • 2013
  • The contrast enhancement techniques based on Laplacian pyramid image fusion have a benefit that they can faithfully describe the image information because they combine the multiple resource images by selecting the desired pixel in each image. However, they also have some problem that the output image may contain noise, because the methods evaluate the visual information on the basis of each pixel. In this paper, an improved contrast enhancement method, which effectively suppresses the noise, using image fusion is proposed. The proposed method combines the resource images by making Laplacian pyramids generated from weight maps, which are produced by measuring the difference between the block-based local well exposedness and local homogeneity for each resource image. We showed the proposed method could produce less noisy images compared to the conventional techniques in the test for various images.

Enhancement Characteristics of Gadolinium Contrast Agent in the Rat Inner Ear Perilymph through CSF microcirculation (뇌척수액 미세순환을 통한 래트 내이 외림프의 가돌리늄 조영제 증강 특성)

  • Kim, Min Jung;Lee, Sang-Yeol;Lee, Hui Joong;Lee, Taekwan;Chang, Yongmin
    • Journal of Biomedical Engineering Research
    • /
    • v.43 no.4
    • /
    • pp.193-198
    • /
    • 2022
  • Contrast enhanced magnetic resonance imaging using gadolinium-based contrast agent (GBCA) is a very useful in vivo technique to visualize the inner ear pathology including endolymphatic hydrops. Although systemic intravenous (IV) administration can visualize the perilymph space, the visualization was possible by indirect passage of contrast agent through blood-perilymph barrier. All animal experimental procedures were performed under anesthesia with 5% isoflurane. Lipopolysaccharide (LPS) was instilled into the left tympanic cavity through the tympanic membrane using a sterile 27gauge needle to induce hydrops model. Tucker-Davis Technologies system was used to measure Auditory Brainstem Responses (ABRs). For intracerebroven-tricular (ICV) administration, 25 µmol of GADOVIST (Bayer, Berlin, Germany) was used and diluted GADOVIST injection was 10 µl. MR imaging was acquired with a 9.4 Tesla MRI scanner. Transmit-receive volume coil with 40 mm inner diameter and 75 mm out diameter was used. ICV administration well demonstrated the strong enhancement along the cerebrospinal fluid (CSF) microcirculation pathway including CSF fluid in the subarachnoid space and CSF space of the inner ear structures. On the other hand, IV administration showed no contrast enhancement along the CSF microcirculation pathway and showed weak enhancement in the inner ear structures. In case of rat hydrops model, ICV administration showed that the reduced contrast enhancement in the perilymph space of the hydrops induced inner ear compared to the contrast enhancement in the perilymph space of the normal inner ear. New systemic ICV administration method provide contrast enhancement of GBCA in the inner ear through CSF microcirculation pathway.

Contrast-Enhanced Magnetic Resonance Angiography: Dose the Test Dose Bolus Represent the Main Dose Bolus Accurately?

  • Jongmin J. Lee;Yongmin Chang;Duk-Sik Kang
    • Korean Journal of Radiology
    • /
    • v.1 no.2
    • /
    • pp.91-97
    • /
    • 2000
  • Objective: To determine whether the time-intensity curves acquired by test and main dose contrast injections for MR angiography are similar. Materials and Methods: In 11 patients, repeated contrast-enhanced 2D-turbo-FLASH scans with 1-sec interval were obtained. Both test and main dose timeintensity curves were acquired from the abdominal aorta, and the parameters of time-intensity curves for the test and main boluses were compared. The parameters used were arterial and venous enhancement times, arterial peak enhancement time, arteriovenous circulation time, enhancement duration and enhancement expansion ratio. Results: Between the main and test boluses, arterial and venous enhancement times and arteriovenous circulation time showed statistically significant correlation (p < 0.01), with correlation coefficients of 0.95, 0.92 and 0.98 respectively. Although the enhancement duration was definitely greater than infusion time, reasonable measurement of the end enhancement point in the main bolus was impossible. Conclusion: Only arterial and venous enhancement times and arteriovenous circulation time of the main bolus could be predicted from the test-bolus results. The use of these reliable parameters would lead to improvements in the scan timing method for MR angiography.

  • PDF

An Image Contrast Enhancement Method Using Brightness Preseving on the Linear Approximation CDF (선형 추정 CDF에서 밝기 보존을 이용한 이미지 콘트라스트 향상 기법)

  • Cho Hwa-Hyun;Choi Myung-Ryul
    • The KIPS Transactions:PartB
    • /
    • v.11B no.7 s.96
    • /
    • pp.779-784
    • /
    • 2004
  • In this paper, we have proposed an image contrast control method using brightness preserving on the FPD(Flat Panel Display). The proposed method can be easily applied to the FPD required real-time processing, since hardware complexity is greatly reduced using linear approximation method of CDF(Cumulative Density Function). For effective processing of the proposed algorithm, we have utilized the sample value of CDF and Barrel Shift. Visual test and standard deviation of their histogram have been introduced to evaluate the resultant output images of the pro-posed method and the original ones.

Image Enhancement Based on Local Histogram Specification (로컬 히스토그램 명세화에 기반한 화질 개선)

  • Khusanov, Ulugbek;Lee, Chang-Hoon
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.23 no.1
    • /
    • pp.18-23
    • /
    • 2013
  • In this paper we propose an image enhancement technique based on histogram specification method over local overlapping regions referred as Local Histogram Specification. First, both reference and original images are splitted into local regions that each overlaps half of its adjacent regions and general histogram specification method is used between corresponding local regions of reference and original image. However it produces noticeable boundary effects. Linear weighted image blending method is used to reduce this effect in order to make seamless image and we also proposed new technique dealing with over-enhanced contrast areas. We satisfied with our experimental results that showed better enhancement accuracy and less noise amplifications compared to other well-known image enhancement methods. We conclude that the proposed method is well suited for motion detection systems as a responsible part to overcome sudden illumination changes.