• Title/Summary/Keyword: Contrast to noise ratio

Search Result 298, Processing Time 0.023 seconds

A Study on MR Imaging Method for The Patient with Inserting Shoulder Joint Suture Anchor (견관절 삽입술을 시행한 환자의 자기 공명 영상법에 관한 연구)

  • Park, Eui-Cheol;Bae, Seok-Hwan;Ryu, Yeun-Chul;Park, Young-Joon;Kim, Yong-Gwon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.4
    • /
    • pp.513-519
    • /
    • 2021
  • Metallic suture anchors are very useful and common fixation devices that are inserted into the target bone to sustain the tendon of a patient with musculus supraspinatus tendon ruptures. On the other hand, the presence of a metallic material prosthesis, such as a metal suture anchor, causes severe MR imaging artifacts, including field distortion, signal loss, and failure of fat suppression. The difference in magnetic susceptibility between metal and other organic materials causes magnetic field distortion surrounding the prosthesis. The resulting magnetic field inhomogeneity makes the images with a lower signal-to-noise ratio and distortion. For a patient with a suture anchor implanted, MR imaging is the golden standard for determining the postoperative prognosis, and a fat-saturation sequence is one of the imaging methods most affected by metal-induced artifacts. In this study, three fat-saturation sequences were compared. Artifact quantification and contrast comparison between the supraspinatus tendon and the surrounding muscle were presented. The images obtained using the STIR pulse sequence showed fewer susceptibility artifacts and better visibility in the supraspinatus tendon and the tissue area. Therefore, the STIR sequence is the most appropriate fat-saturation imaging method for patients with a metallic prosthesis.

Steel Plate Faults Diagnosis with S-MTS (S-MTS를 이용한 강판의 표면 결함 진단)

  • Kim, Joon-Young;Cha, Jae-Min;Shin, Junguk;Yeom, Choongsub
    • Journal of Intelligence and Information Systems
    • /
    • v.23 no.1
    • /
    • pp.47-67
    • /
    • 2017
  • Steel plate faults is one of important factors to affect the quality and price of the steel plates. So far many steelmakers generally have used visual inspection method that could be based on an inspector's intuition or experience. Specifically, the inspector checks the steel plate faults by looking the surface of the steel plates. However, the accuracy of this method is critically low that it can cause errors above 30% in judgment. Therefore, accurate steel plate faults diagnosis system has been continuously required in the industry. In order to meet the needs, this study proposed a new steel plate faults diagnosis system using Simultaneous MTS (S-MTS), which is an advanced Mahalanobis Taguchi System (MTS) algorithm, to classify various surface defects of the steel plates. MTS has generally been used to solve binary classification problems in various fields, but MTS was not used for multiclass classification due to its low accuracy. The reason is that only one mahalanobis space is established in the MTS. In contrast, S-MTS is suitable for multi-class classification. That is, S-MTS establishes individual mahalanobis space for each class. 'Simultaneous' implies comparing mahalanobis distances at the same time. The proposed steel plate faults diagnosis system was developed in four main stages. In the first stage, after various reference groups and related variables are defined, data of the steel plate faults is collected and used to establish the individual mahalanobis space per the reference groups and construct the full measurement scale. In the second stage, the mahalanobis distances of test groups is calculated based on the established mahalanobis spaces of the reference groups. Then, appropriateness of the spaces is verified by examining the separability of the mahalanobis diatances. In the third stage, orthogonal arrays and Signal-to-Noise (SN) ratio of dynamic type are applied for variable optimization. Also, Overall SN ratio gain is derived from the SN ratio and SN ratio gain. If the derived overall SN ratio gain is negative, it means that the variable should be removed. However, the variable with the positive gain may be considered as worth keeping. Finally, in the fourth stage, the measurement scale that is composed of selected useful variables is reconstructed. Next, an experimental test should be implemented to verify the ability of multi-class classification and thus the accuracy of the classification is acquired. If the accuracy is acceptable, this diagnosis system can be used for future applications. Also, this study compared the accuracy of the proposed steel plate faults diagnosis system with that of other popular classification algorithms including Decision Tree, Multi Perception Neural Network (MLPNN), Logistic Regression (LR), Support Vector Machine (SVM), Tree Bagger Random Forest, Grid Search (GS), Genetic Algorithm (GA) and Particle Swarm Optimization (PSO). The steel plates faults dataset used in the study is taken from the University of California at Irvine (UCI) machine learning repository. As a result, the proposed steel plate faults diagnosis system based on S-MTS shows 90.79% of classification accuracy. The accuracy of the proposed diagnosis system is 6-27% higher than MLPNN, LR, GS, GA and PSO. Based on the fact that the accuracy of commercial systems is only about 75-80%, it means that the proposed system has enough classification performance to be applied in the industry. In addition, the proposed system can reduce the number of measurement sensors that are installed in the fields because of variable optimization process. These results show that the proposed system not only can have a good ability on the steel plate faults diagnosis but also reduce operation and maintenance cost. For our future work, it will be applied in the fields to validate actual effectiveness of the proposed system and plan to improve the accuracy based on the results.

Image Quality Evaluation of CsI:Tl and Gd2O2S Detectors in the Indirect-Conversion DR System (간접변환방식 DR장비에서 CsI:Tl과 Gd2O2S의 검출기 화질 평가)

  • Kong, Changgi;Choi, Namgil;Jung, Myoyoung;Song, Jongnam;Kim, Wook;Han, Jaebok
    • Journal of the Korean Society of Radiology
    • /
    • v.11 no.1
    • /
    • pp.27-35
    • /
    • 2017
  • The purpose of this study was to investigate the features of CsI:Tl and $Gd_2O_2S$ detectors with an indirect conversion method using phantom in the DR (digital radiography) system by obtaining images of thick chest phantom, medium thickness thigh phantom, and thin hand phantom and by analyzing the SNR and CNR. As a result of measuring the SNR and CNR according to the thickness change of the subject, the SNR and CNR were higher in CsI:Tl detector than in $Gd_2O_2S$ detector when the medium thickness thigh phantom and thin hand phantom were scanned. However, when the thick chest phantom was used, for the SNR at 80~125 kVp and the CNR at 80~110 kVp in the $Gd_2O_2S$ detector, the values were higher than those of CsI:Tl detector. The SNR and CNR both increased as the tube voltage increased. The SNR and CNR of CsI:Tl detector in the medium thickness thigh phantom increased at 40~50 kVp and decreased as the tube voltage increased. The SNR and CNR of $Gd_2O_2S$ detector increased at 40~60 kVp and decreased as the tube voltage increased. The SNR and CNR of CsI:Tl detctor in the thin hand phantom decreased at the low tube voltage and increased as the tube voltage increased, but they decreased again at 100~110 kVp, while the SNR and CNR of $Gd_2O_2S$ detector were found to decrease as the tube voltage increased. The MTF of CsI:Tl detector was 6.02~90.90% higher than that of $Gd_2O_2S$ detector at 0.5~3 lp/mm. The DQE of CsI:Tl detector was 66.67~233.33% higher than that of $Gd_2O_2S$ detector. In conclusion, although the values of CsI:Tl detector were higher than those of $Gd_2O_2S$ detector in the comparison of MTF and DQE, the cheaper $Gd_2O_2S$ detector had higher SNR and CNR than the expensive CsI:Tl detector at a certain tube voltage range in the thick check phantom. At chest X-ray, if the $Gd_2O_2S$ detector is used rather than the CsI:Tl detector, chest images with excellent quality can be obtained, which will be useful for examination. Moreover, price/performance should be considered when determining the detector type from the viewpoint of the user.

The Comparison between Single Shot Turbo Spin Echo and B-FFE (Balanced Turbo Field-echo) in the Differentiation of Focal Liver Lesions (국소 간병변 감별에서 단발고속스핀에코 기법과 균형항정상 태세차를 이용한 고속영역 기법간의 비교)

  • Kim, Young-Chul;Kim, Myeong-Jin;Cha, Seung-Whan;Chung, Yong-Eun;Han, Kwang-Hyup;Choi, Jin-Sub
    • Investigative Magnetic Resonance Imaging
    • /
    • v.11 no.1
    • /
    • pp.39-48
    • /
    • 2007
  • Purpose : To determine the diagnostic accuracy of four different sequences : moderately T2 weighted, two heavily T2-weighted single shot turbo spin-echo sequence and breath-hold axial-2D balanced turbo field-echo sequence(bFFE) for characterization of focal lesions. Materials and Methods : During the 3-month period between June and August 2005, seventy-six patients were proved to have ninety-three focal hepatic lesions on MR imaging. The patients consisted of 49 men and 27 women (age range, 15-75 years; mean age, 56.23 years). All MR images were acquired on a 1.5-T MR using the following sequences: 1. A breath-hold axial T2-weighted single shot turbo spin-echo sequence, 2. a breath-hold axial-2D balanced turbo field-echo sequence. Two radiologists performed quantitative analysis. Another radiologist measured the lesion-to-liver contrast-to-noise ratio at the region-of-interest in the four sequences. Results : There was no significant difference in inter-observer variability between the four sequences. The accuracy for both cyst and malignancy of moderate T2 weighted MRI (echo time: 80 msec) was also highest. There was significant difference for lesion characterization between moderate T2 weighted MRI and balanced steady state procession (p-value: 0.004) in the second reader. For longer echo time, the CNR of cystic lesions were markedly increased in comparison to lesions of other component. Conclusion : The accuracy and inter-observer variability of single shot turbo spin echo T2 weighted sequence was higher than bFFE. Although there was no statically significant difference, moderate T2 weighted MRI (echo time: 80 msec) was more accurate than heavily T2 weighted sequence (echo time: 300 msec). If the results for lesion characterization is equivocal in TE 80, the addition of heavily T2 weighted MRI (echo time: 180 msec) can be helpful.

  • PDF

Ferucarbotran-Enhanced Hepatic MRI at 3T Unit: Quantitative and Qualitative Comparison of Fast Breath-hold Imaging Sequences (간의 3T 자기공명영상에서 초상자성산화철 조영증강 급속호흡정지영상기법들간의 양적 및 질적 비교평가)

  • Cho, Kyung-Eun;Yu, Jeong-Sik;Chung, Jae-Joon;Kim, Joo-Hee;Kim, Ki-Whang
    • Investigative Magnetic Resonance Imaging
    • /
    • v.14 no.1
    • /
    • pp.31-40
    • /
    • 2010
  • Purpose : To compare the relative values of various fast breath-hold imaging sequences for superparamagnetic iron-oxide (SPIO)-enhanced hepatic MRI for the assessment of solid focal lesions with a 3T MRI unit. Materials and Methods : 102 consecutive patients with one or more solid malignant hepatic lesions were evaluated by spoiled gradient echo (GRE) sequences with three different echo times (2.4 msec [GRE_2.4], 5.8 msec [GRE_5.8], and 10 msec [GRE_10]) for $T2^*$-weighted imaging in addition to T2-weighted turbo spin echo (TSE) sequence following intravenous SPIO injection. Image qualities of the hepatic contour, vascular landmarks and artifacts were rated by two independent readers using a four-point scale. For quantitative analysis, contrast-to-noise ratio (CNR) was measured in 170 solid focal lesions larger than 1 cm (107 hepatocellular carcinomas, nine cholangiocarcinomas and 54 metastases). Results : GRE_5.8 showed the highest mean points for hepatic contour, vascular anatomy and imaging artifact presence among all of the subjected sequences (p<0.001) and was comparable (p=0.414) with GRE_10 with regard to lesion conspicuity. The mean CNRs were significantly higher (p<0.001) in the following order: GRE_10 ($24.4{\pm}14.5$), GRE_5.8 ($14.8{\pm}9.4$), TSE ($9.7{\pm}6.3$), and GRE_2.4 ($7.9{\pm}6.4$). The mean CNRs of CCCs and metastases were higher than those of HCCs for all imaging sequences (p<0.05). Conclusion : Regarding overall performances, GRE using a moderate echo time of 5.8 msec can provide the most reliable data among the various fast breath-hold SPIO-enhanced hepatic MRI sequences at 3T unit despite the lower CNR of GRE_5.8 compared to that of GRE_10.

Optimization of the Flip Angle and Scan Timing in Hepatobiliary Phase Imaging Using T1-Weighted, CAIPIRINHA GRE Imaging

  • Kim, Jeongjae;Kim, Bong Soo;Lee, Jeong Sub;Woo, Seung Tae;Choi, Guk Myung;Kim, Seung Hyoung;Lee, Ho Kyu;Lee, Mu Sook;Lee, Kyung Ryeol;Park, Joon Hyuk
    • Investigative Magnetic Resonance Imaging
    • /
    • v.22 no.1
    • /
    • pp.1-9
    • /
    • 2018
  • Purpose: This study was designed to optimize the flip angle (FA) and scan timing of the hepatobiliary phase (HBP) using the 3D T1-weighted, gradient-echo (GRE) imaging with controlled aliasing in parallel imaging results in higher acceleration (CAIPIRINHA) technique on gadoxetic acid-enhanced 3T liver MR imaging. Materials and Methods: Sixty-two patients who underwent gadoxetic acid-enhanced 3T liver MR imaging were included in this study. Four 3D T1-weighted GRE imaging studies using the CAIPIRINHA technique and FAs of $9^{\circ}$ and $13^{\circ}$ were acquired during HBP at 15 and 20 min after intravenous injection of gadoxetic acid. Two abdominal radiologists, who were blinded to the FA and the timing of image acquisition, assessed the sharpness of liver edge, hepatic vessel clarity, lesion conspicuity, artifact severity, and overall image quality using a five-point scale. Quantitative analysis was performed by another radiologist to estimate the relative liver enhancement (RLE) and the signal-to-noise ratio (SNR). Statistical analyses were performed using the Wilcoxon signed rank test and one-way analysis of variance. Results: The scores of the HBP with an FA of $13^{\circ}$ during the same delayed time were significantly higher than those of the HBP with an FA of $9^{\circ}$ in all the assessment items (P < 0.01). In terms of the delay time, images at the same FA obtained with a 20-min-HBP showed better quality than those obtained with a 15-min-HBP. There was no significant difference in qualitative scores between the 20-min-HBP and the 15-min-HBP images in the non-liver cirrhosis (LC) group except for the hepatic vessel clarity score with $9^{\circ}$ FA. In the quantitative analysis, a statistically significant difference was found in the degree of RLE in the four HBP images (P = 0.012). However, in the subgroup analysis, no significant difference in RLE was found in the four HBP images in either the LC or the non-LC groups. The SNR did not differ significantly in the four HBP images. In the subgroup analysis, 20-min-HBP imaging with a $13^{\circ}$ FA showed the highest SNR value in the LC-group, whereas 15-min-HBP imaging with a $13^{\circ}$ FA showed the best value of SNR in the non-LC group. Conclusion: The use of a moderately high FA improves the image quality and lesion conspicuity on 3D, T1-weighted GRE imaging using the CAIPIRINHA technique on gadoxetic acid, 3T liver MR imaging. In patients with normal liver function, the 15-min-HBP with a $13^{\circ}$ FA represents a feasible option without a significant decrease in image quality.

Flip Angle of the Optimal T1 Effect Using FLASH Pulse Sequence at 3T Abdominal MRI (FLASH를 이용한 3T 복부검사에 있어서 최적의 T1효과를 위한 적정 Flip Angle)

  • Han, Jae-Bok;Choi, Nam-Gil
    • Journal of radiological science and technology
    • /
    • v.32 no.1
    • /
    • pp.101-106
    • /
    • 2009
  • Purpose of this study is to compare the signal intensity (SI) and CNR with T1 weighted image using FLASH at 3T abdominal MRI by varying flip angle (FA). Totally 20 patients (male : 12, female : 8, Age : $28{\sim}63$ years with mean : 51) were examined by 3 Tesla MR scanner (Magnetom Tim Trio, SIEMENS, Germany) with 8 channel body array coil between september and October 2008. Imaging parameters were as follows : FLASH sequence, TR : 120 ms, TE : minimum, FOV (field of view) : $360{\times}300\;mm$, Matrix : $256{\times}224$, slice : 6 mm, scan time : 15 sec and Breath-hold technique. Abdominal image, with a 50 ml syringe filled with water placed in the FOV measuring the water signal, were acquired with varying FA through $10^{\circ}$ to $90^{\circ}$ with $10^{\circ}$ interval. SI's were measured three times at liver parenchyme, water, spleen and background and averaged. The CNR's were measured between the ROIs (region of interest). Statistic analysis was performed with ANOVA test using SPSS software (version 17.0). Less than FA $30^{\circ}$, abdominal images were severely inhomogeneity. Especially, T1 effect of water signal was weak. As the flip angle increased, the signal intensity decreased at all the regions. Especially, flip angle of the highest signal intensity was observed with $40^{\circ}$ at the liver parenchyme, $20^{\circ}$ at water, $30^{\circ}$ at the spleen, respectively. The CNR between liver and water was -60.92 at FA $10^{\circ}$ and 15.16 at FA $80^{\circ}$. The CNR between liver and spleen was -3.18 at FA $10^{\circ}$ and 9.65 at $80^{\circ}$. In conclusion, FA $80^{\circ}$ is optimal for T1 weighted effect using FLASH pulse sequence at 3.0 T abdominal MRI.

  • PDF

A Study on Compensation for Imaging Qualities Having Artifact with the Change of the Center Frequency Adjustment and Transmission Gain Values at 1.5 Tesla MRI (1.5 Tesla 기기에서 중심주파수 조정과 송 신호강도(Transmission Gain)값 변화에 따른 인공물이 있는 자기공명영상의 질 보상에 관한 연구)

  • Lee, Jae-Seung;Goo, Eun-Hoe;Park, Cheol-Soo;Lee, Sun-Yeob;Lee, Han-Joo
    • Progress in Medical Physics
    • /
    • v.20 no.4
    • /
    • pp.244-252
    • /
    • 2009
  • The purpose of this study is to compensate for susceptibility and a ferromagnetic body artifact using CFA and TGV on MR Imaging. A total of 30 patients (15 men and 15 women, mean age: 45 years) were performed on head and neck diseases. MR Unit used a 1.5T superconducting magnet (GE medical system, High Density). This study have investigated by changing with CFA and TGV (70, 90, 110, 130, 150) searching for compensation values about susceptibility and a ferromagnetic body artifact in 60 kg standards of body weight (p<0.05). As a quality results, Image qualities were obtained at different score from CFA and TGV (70, 90, 110, 130, $150=3.23{\pm}0.35$, $4.31{\pm}0.02$ $4.23{\pm}0.21$, $5.12{\pm}0.25$, $7.13{\pm}0.72$, $8.31{\pm}0.01$, $5.21{\pm}0.15$, $6.14{\pm}0.08$, $5.23{\pm}0.72$, $5.91{\pm}0.06$, p<0.05). Absolute CNRs (TG, CNRpre, CNRpost) were acquired with (70:$-1.44{\pm}0.11$, $-2.7{\pm}0.04$, 90:$-2.18{\pm}0.42$, $-4.41{\pm}0.43$, 110:$-2.89{\pm}0.43$, $-5.23{\pm}0.02$, 130:$-2.34{\pm}0.05$, $-5.26{\pm}0.01$, 150: $-2.09{\pm}0.08$, $-3.87{\pm}0.12$, p<0.05). In conclusions, this study could be compensated for metal and flow artifacts surrounding the tissues having artifact by changing CFA and TGV.

  • PDF