• Title/Summary/Keyword: Contrast limited adaptive histogram equalization

Search Result 18, Processing Time 0.023 seconds

Iris Image Enhancement for the Recognition of Non-ideal Iris Images

  • Sajjad, Mazhar;Ahn, Chang-Won;Jung, Jin-Woo
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.4
    • /
    • pp.1904-1926
    • /
    • 2016
  • Iris recognition for biometric personnel identification has gained much interest owing to the increasing concern with security today. The image quality plays a major role in the performance of iris recognition systems. When capturing an iris image under uncontrolled conditions and dealing with non-cooperative people, the chance of getting non-ideal images is very high owing to poor focus, off-angle, noise, motion blur, occlusion of eyelashes and eyelids, and wearing glasses. In order to improve the accuracy of iris recognition while dealing with non-ideal iris images, we propose a novel algorithm that improves the quality of degraded iris images. First, the iris image is localized properly to obtain accurate iris boundary detection, and then the iris image is normalized to obtain a fixed size. Second, the valid region (iris region) is extracted from the segmented iris image to obtain only the iris region. Third, to get a well-distributed texture image, bilinear interpolation is used on the segmented valid iris gray image. Using contrast-limited adaptive histogram equalization (CLAHE) enhances the low contrast of the resulting interpolated image. The results of CLAHE are further improved by stretching the maximum and minimum values to 0-255 by using histogram-stretching technique. The gray texture information is extracted by 1D Gabor filters while the Hamming distance technique is chosen as a metric for recognition. The NICE-II training dataset taken from UBRIS.v2 was used for the experiment. Results of the proposed method outperformed other methods in terms of equal error rate (EER).

Image Contrast Enhancement by Illumination Change Detection (조명 변화 감지에 의한 영상 콘트라스트 개선)

  • Odgerel, Bayanmunkh;Lee, Chang Hoon
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.24 no.2
    • /
    • pp.155-160
    • /
    • 2014
  • There are many image processing based algorithms and applications that fail when illumination change occurs. Therefore, the illumination change has to be detected then the illumination change occurred images need to be enhanced in order to keep the appropriate algorithm processing in a reality. In this paper, a new method for detecting illumination changes efficiently in a real time by using local region information and fuzzy logic is introduced. The effective way for detecting illumination changes in lighting area and the edge of the area was selected to analyze the mean and variance of the histogram of each area and to reflect the changing trends on previous frame's mean and variance for each area of the histogram. The ways are used as an input. The changes of mean and variance make different patterns w hen illumination change occurs. Fuzzy rules were defined based on the patterns of the input for detecting illumination changes. Proposed method was tested with different dataset through the evaluation metrics; in particular, the specificity, recall and precision showed high rates. An automatic parameter selection method was proposed for contrast limited adaptive histogram equalization method by using entropy of image through adaptive neural fuzzy inference system. The results showed that the contrast of images could be enhanced. The proposed algorithm is robust to detect global illumination change, and it is also computationally efficient in real applications.

Comparison of Pre-processed Brain Tumor MR Images Using Deep Learning Detection Algorithms

  • Kwon, Hee Jae;Lee, Gi Pyo;Kim, Young Jae;Kim, Kwang Gi
    • Journal of Multimedia Information System
    • /
    • v.8 no.2
    • /
    • pp.79-84
    • /
    • 2021
  • Detecting brain tumors of different sizes is a challenging task. This study aimed to identify brain tumors using detection algorithms. Most studies in this area use segmentation; however, we utilized detection owing to its advantages. Data were obtained from 64 patients and 11,200 MR images. The deep learning model used was RetinaNet, which is based on ResNet152. The model learned three different types of pre-processing images: normal, general histogram equalization, and contrast-limited adaptive histogram equalization (CLAHE). The three types of images were compared to determine the pre-processing technique that exhibits the best performance in the deep learning algorithms. During pre-processing, we converted the MR images from DICOM to JPG format. Additionally, we regulated the window level and width. The model compared the pre-processed images to determine which images showed adequate performance; CLAHE showed the best performance, with a sensitivity of 81.79%. The RetinaNet model for detecting brain tumors through deep learning algorithms demonstrated satisfactory performance in finding lesions. In future, we plan to develop a new model for improving the detection performance using well-processed data. This study lays the groundwork for future detection technologies that can help doctors find lesions more easily in clinical tasks.

A Performance Comparison of Histogram Equalization Algorithms for Cervical Cancer Classification Model (평활화 알고리즘에 따른 자궁경부 분류 모델의 성능 비교 연구)

  • Kim, Youn Ji;Park, Ye Rang;Kim, Young Jae;Ju, Woong;Nam, Kyehyun;Kim, Kwang Gi
    • Journal of Biomedical Engineering Research
    • /
    • v.42 no.3
    • /
    • pp.80-85
    • /
    • 2021
  • We developed a model to classify the absence of cervical cancer using deep learning from the cervical image to which the histogram equalization algorithm was applied, and to compare the performance of each model. A total of 4259 images were used for this study, of which 1852 images were normal and 2407 were abnormal. And this paper applied Image Sharpening(IS), Histogram Equalization(HE), and Contrast Limited Adaptive Histogram Equalization(CLAHE) to the original image. Peak Signal-to-Noise Ratio(PSNR) and Structural Similarity index for Measuring image quality(SSIM) were used to assess the quality of images objectively. As a result of assessment, IS showed 81.75dB of PSNR and 0.96 of SSIM, showing the best image quality. CLAHE and HE showed the PSNR of 62.67dB and 62.60dB respectively, while SSIM of CLAHE was shown as 0.86, which is closer to 1 than HE of 0.75. Using ResNet-50 model with transfer learning, digital image-processed images are classified into normal and abnormal each. In conclusion, the classification accuracy of each model is as follows. 90.77% for IS, which shows the highest, 90.26% for CLAHE and 87.60% for HE. As this study shows, applying proper digital image processing which is for cervical images to Computer Aided Diagnosis(CAD) can help both screening and diagnosing.

Contrast Enhancement for X-ray Images Based on Combined Enhancement of Scaling and Wavelet Coefficients (웨이브렛과 기저 계수를 이용한 X-ray 영상의 대조도 향상기법)

  • Park, Chun-Joo;Kim, Do-Il;Jang, Do-Yoon;Yoon, Han-Been;Choe, Bo-Young;Kim, Ho-Kyung;Lee, Hyoung-Koo
    • Progress in Medical Physics
    • /
    • v.19 no.3
    • /
    • pp.150-156
    • /
    • 2008
  • An applied technique of contrast enhancement for X-ray image is proposed which is based on combined enhancement of scaling and wavelet coefficients in discrete wavelet transform space. Conventional contrast enhancement methods such as contrast limited adaptive histogram equalization (CLAHE), multi-scale image contrast amplification (MUSICA) and gamma correction were applied on scaling coefficients to enhance the contrast of an original. In order to enhance the detail as well as reduce the blurring caused by up scaling of contrast modified scale coefficients from lower resolution, the sigmoid manipulation function was used to manipulate wavelet coefficients. The contrast detail mammography (CDMAM) phantom was imaged and processed to measure the image line profile of results and contrast to noise ratio (CNR) comparatively. The proposed technique produced better results than direct application of various contrast enhancement methods on image itself. The proposed method can enhance contrast, and also suppress the amplification of noise components in a single process. It could be useful for various applications in medical, industrial and graphical images where contrast and detail are of importance.

  • PDF

Detection of Microcalcification Using the Wavelet Based Adaptive Sigmoid Function and Neural Network

  • Kumar, Sanjeev;Chandra, Mahesh
    • Journal of Information Processing Systems
    • /
    • v.13 no.4
    • /
    • pp.703-715
    • /
    • 2017
  • Mammogram images are sensitive in nature and even a minor change in the environment affects the quality of the images. Due to the lack of expert radiologists, it is difficult to interpret the mammogram images. In this paper an algorithm is proposed for a computer-aided diagnosis system, which is based on the wavelet based adaptive sigmoid function. The cascade feed-forward back propagation technique has been used for training and testing purposes. Due to the poor contrast in digital mammogram images it is difficult to process the images directly. Thus, the images were first processed using the wavelet based adaptive sigmoid function and then the suspicious regions were selected to extract the features. A combination of texture features and gray-level co-occurrence matrix features were extracted and used for training and testing purposes. The system was trained with 150 images, while a total 100 mammogram images were used for testing. A classification accuracy of more than 95% was obtained with our proposed method.

A Robust Road Sign Information Detection Method In Dark and Noisy Scene Using CLAHE (특징 검출이 어려운 환경에서 CLAHE 기반 도로 문자 정보 검출)

  • Kang, Seog June;Han, Dong Seog
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2016.06a
    • /
    • pp.361-363
    • /
    • 2016
  • 현재 차량 내 운전자에게 편의성과 안전성을 제공하는 시스템이 활발히 개발 중이고 향후 ADAS(Advanced Driver Assistance System)와 스마트 자동차에서 영상 정보를 이용한 물체 추적과 분석은 매우 중요한 부분을 차지하고 있다. 영상에서 얻을 수 있는 정보 중 현재 도로의 이정표 정보는 중요한 분석 정보로 사용된다. 하지만 국내 도로표지판 검출 연구의 경우 유럽과 북미와 비교하여 연구 개발이 활발히 진행되고 있지 않다. 국내의 경우 도로 이정표에서 영문자뿐만 아니라 한글 문자 정보까지 포함하고 있어 검출이 쉽지 않다. 또한 비교적 밝고 잡음이 적은 검출하기 좋은 환경에서는 검출이 잘 되지만 명암이 뚜렷하지 않고 잡음이 많은 환경에서는 도로 이정표 문자 검출이 어렵다. 이에 본 논문에서는 CLAHE(Contrast-Limited Adaptive Histogram Equalization) 방법을 적용하여 영상이 어둡고 잡음이 많은 환경에서 국내 도로 이정표의 문자 정보를 얻는다. 실험 결과, 기존 방법에 비해 문자 영역 검출 성능이 향상되었다.

  • PDF

Enhanced CT-image for Covid-19 classification using ResNet 50

  • Lobna M. Abouelmagd;Manal soubhy Ali Elbelkasy
    • International Journal of Computer Science & Network Security
    • /
    • v.24 no.1
    • /
    • pp.119-126
    • /
    • 2024
  • Disease caused by the coronavirus (COVID-19) is sweeping the globe. There are numerous methods for identifying this disease using a chest imaging. Computerized Tomography (CT) chest scans are used in this study to detect COVID-19 disease using a pretrain Convolutional Neural Network (CNN) ResNet50. This model is based on image dataset taken from two hospitals and used to identify Covid-19 illnesses. The pre-train CNN (ResNet50) architecture was used for feature extraction, and then fully connected layers were used for classification, yielding 97%, 96%, 96%, 96% for accuracy, precision, recall, and F1-score, respectively. When combining the feature extraction techniques with the Back Propagation Neural Network (BPNN), it produced accuracy, precision, recall, and F1-scores of 92.5%, 83%, 92%, and 87.3%. In our suggested approach, we use a preprocessing phase to improve accuracy. The image was enhanced using the Contrast Limited Adaptive Histogram Equalization (CLAHE) algorithm, which was followed by cropping the image before feature extraction with ResNet50. Finally, a fully connected layer was added for classification, with results of 99.1%, 98.7%, 99%, 98.8% in terms of accuracy, precision, recall, and F1-score.