• Title/Summary/Keyword: Contractile state

Search Result 28, Processing Time 0.022 seconds

Ameliorative effects of atractylodin on intestinal inflammation and co-occurring dysmotility in both constipation and diarrhea prominent rats

  • Yu, Changchun;Xiong, Yongjian;Chen, Dapeng;Li, Yanli;Xu, Bin;Lin, Yuan;Tang, Zeyao;Jiang, Chunling;Wang, Li
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.21 no.1
    • /
    • pp.1-9
    • /
    • 2017
  • Intestinal disorders often co-occur with inflammation and dysmotility. However, drugs which simultaneously improve intestinal inflammation and co-occurring dysmotility are rarely reported. Atractylodin, a widely used herbal medicine, is used to treat digestive disorders. The present study was designed to characterize the effects of atractylodin on amelioration of both jejunal inflammation and the co-occurring dysmotility in both constipation-prominent (CP) and diarrhea-prominent (DP) rats. The results indicated that atractylodin reduced proinflammatory cytokines TNF-${\alpha}$, IL-$1{\beta}$, and IL-6 in the plasma and inhibited the expression of inflammatory mediators iNOS and NF-kappa B in jejunal segments in both CP and DP rats. The results indicated that atractylodin exerted stimulatory effects and inhibitory effects on the contractility of jejunal segments isolated from CP and DP rats respectively, showing a contractile-state-dependent regulation. Atractylodin-induced contractile-state-dependent regulation was also observed by using rat jejunal segments in low and high contractile states respectively (5 pairs of low/high contractile states). Atractylodin up-regulated the decreased phosphorylation of 20 kDa myosin light chain, protein contents of myosin light chain kinase (MLCK), and MLCK mRNA expression in jejunal segments of CP rats and down-regulated those increased parameters in DP rats. Taken together, atractylodin alleviated rat jejunal inflammation and exerted contractile-state-dependent regulation on the contractility of jejunal segments isolated from CP and DP rats respectively, suggesting the potential clinical implication for ameliorating intestinal inflammation and co-occurring dysmotility.

An Estimating Method of Contractile State Changes Come From Continuous Isometric Contraction of Skeletal Muscle (골격근의 지속적인 등척성 수축 시 발생하는 수축상태변화 추정 방법)

  • Park Hyung-Jun;Lee Seung-Ju
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.52 no.1
    • /
    • pp.55-63
    • /
    • 2003
  • In this study was proposed that a new estimating method for investigation of contractile state changes which generated from continuous isometric contraction of skeletal muscle. The physiological changes(EMG, ECG) and the psychological changes by CNS(central nervous system) were measured by experiments, while the muscle of subjects contracted continuously with isometric contraction in constant load. The psychological changes were represented as three-step-change named 'fatigue', 'pain' and 'sick(greatly pain)' from oral test, and the method which compared physiological change with psychological change on basis of these three steps was developed. The result of analyzing the physiological signals, EMG and ECG signal changes were observed at the vicinity of judging point in time of psychological changes. Namely, it is supposed that contractile states have three kind of states pattern (stable, fatigue, pain) instead of two states (stable, fatigue).

An Analysis of Multichannel EMG in Continuous Isometric Contraction of Human Muscle (근육의 지속적인 등척성 수축시의 다 채널 근전도 해석)

  • Lee, Seung-Ju;Kim, Ki-Young;Yoon, Chae-Hyun;Lee, Hyun-Chul;Yoon, Yang-Woung;Park, Hyung-Jun
    • Proceedings of the KIEE Conference
    • /
    • 2002.07d
    • /
    • pp.2696-2698
    • /
    • 2002
  • In this study, the comparison of the contractile states change at prime mover muscle with that at synergist muscle was executed, while the muscle contracted continuously with isometric contraction. The contractile states of muscle becomes to change when the voluntary contraction of skeletal muscle is progressed continuously. Such the contractile states change is divided into three states in consideration for not only physiological change but also the psychological change by CNS(central nervous system) as "stable state", "fatigue state" and "pain state". As a result of this study, the prime mover muscle is reached "pain state" but the synergist muscle is not reached. Namely the synergist muscle is delayed state than the prime mover muscle. This result judged that although the prime mover muscle have reached a limit when contraction is continued, owing to effect of delayed state of the synergist muscle, the prime mover muscle is endured some more contraction.

  • PDF

Characteristics of Diprophylline-Induced Bidirectional Modulation on Rat Jejunal Contractility

  • Liu, Fang-Fei;Chen, Da-Peng;Xiong, Yong-Jian;Lv, Bo-Chao;Lin, Yuan
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.18 no.1
    • /
    • pp.47-53
    • /
    • 2014
  • In this study, we propose that diprophylline exerts bidirectional modulation (BM) on the isolated rat jejunal segment depending on its contractile state. The results supported the hypothesis. Diprophylline ($20{\mu}M$) exerted stimulatory effects on the contractility of jejunal segment in six low contractile states while inhibitory effects in six high contractile states, showing the characteristics of BM. Diprophylline-induced stimulatory effect was significantly blocked by atropine, indicating the correlation with cholinergic activation. Diprophylline-induced inhibitory effect was partially blocked by phentolamine, propranolol, and L-N-Nitro-Arginine respectively, indicating their correlation with sympathetic activation and nitric oxide-mediated relaxing mechanisms. Diprophylline-induced BM was abolished by tetrodotoxin or in a $Ca^{2+}$ free condition or pretreated with tyrosine kinase inhibitor imatinib, suggesting that diprophylline-induced BM is $Ca^{2+}$ dependent, and that it requires the presence of enteric nervous system as well as pacemaker activity of interstitial cells of Cajal. Diprophylline significantly increased the reduced MLCK expression and myosin extent in constipation-prominent rats and significantly decreased the increased MLCK expression and myosin extent in diarrhea-prominent rats, suggesting that the change of MLCK expression may also be involved in diprophylline-induced BM on rat jejunal contractility. In summary, diprophylline-exerted BM depends on the contractile states of the jejunal segments, requires the presence of $Ca^{2+}$, enteric nervous system, pacemaker activity of interstitial cells of Cajal, and MLCK-correlated myosin phosphorylation. The results suggest the potential implication of diprophylline in relieving alternative hypo/hyper intestinal motility.

Preliminary Mechanistic Study on the Trachea Smooth Muscle Relaxant Activity of Aqueous Leaf Extract of Tridax Procumbens in Male Wistar Rats

  • Salami, Shakiru Ademola;Salahdeen, Hussein Mofomosara;Anidu, Babatunde Shuaib;Murtala, Babatunde Adekunle;Alada, AbdulRasak Akinola
    • Journal of Pharmacopuncture
    • /
    • v.25 no.3
    • /
    • pp.209-215
    • /
    • 2022
  • Objectives: Aqueous leaf extract of Tridax procumbens (ALETP) has potent relaxant activity. However, this relaxant activity in respiratory smooth muscle remains uninvestigated. This study investigates the effect of ALETP on the contractile activity of tracheal smooth muscle (TSM) in adult male Wistar rats. Methods: Twelve male Wistar rats divided into 2 groups and were treated with either 100 mg/kg of ALETP (ALETP treatment group) or vehicle (distilled water; control group) through oral gavage for 4 weeks. Dose responses of TSM from the 2 groups to acetylcholine (10-9 to 10-5 M), phenylephrine (10-9 to 10-5 M), and potassium chloride (KCl; 10-9 to 10-4 M) were determined cumulatively. Furthermore, cumulative dose responses to acetylcholine (10-9 to 10-5 M) after pre-incubation of TSM with atropine (10-5 M), L-NAME (10-4 M), indomethacin (10-4 M), and nifedipine (10-4 M), were determined. Results: Treatment with ALETP substantially inhibited TSM contraction stimulated by cumulative doses of acetylcholine, phenylephrine, and KCl. Furthermore, preincubation of TSM from the 2 groups in atropine significantly inhibited contractility in TSM. Incubation in L-NAME and indomethacin also significantly inhibited contractility in TSM of ALETP-treated rats compared to that of controls. Contractile activity of the TSM was also inhibited significantly with incubation in nifedipine in ALETP-treated rats. Conclusion: ALETP enhanced relaxant activity in rat TSM primarily by blocking the L-type calcium channel and promoting endothelial nitric oxide release. ALETP contains agents that may be useful in disorders of the respiratory tract.

New record of Pleuronema marinum Dujardin, 1841 (Protozoa, Ciliophora) from South Korea

  • Jeong Hyeon, Yeo;Ji Hye, Choi;Atef, Omar;Jae-Ho, Jung
    • Journal of Species Research
    • /
    • v.11 no.4
    • /
    • pp.278-286
    • /
    • 2022
  • During a field survey of Korean marine ciliates, we collected Pleuronema marinum from a brackish water sample. It is characterized by the presence of a contractile vacuole in mid-body, rather than the subterminal/ terminal contractile vacuole as in other congeners. The cells were examined in vivo and based on protargol and 'wet' silver nitrate impregnation. In addition, the nuclear 18S rRNA gene was sequenced using a single cell. The Korean population morphologically and molecularly resembles a Chinese population of P. marinum. Historical review of the species concludes that 1) two or more species have been assigned into P. marinum, 2) the position of contractile vacuole (e.g., in mid-body) is a valid character state, and 3) P. marinum is probably a rare species. Here we provide a monographic treatment of P. marinum to clarify the issue and for further studies of relevant species. Considering there are about 40 nominal species and complex nomenclatural acts in the genus Pleuronema, further studies should provide descriptions based on protargol and 'wet' silver impregnation with marker gene(s).

Hyaluronic acid and proteoglycan link protein 1 suppresses platelet-derived growth factor-BB-induced proliferation, migration, and phenotypic switching of vascular smooth muscle cells

  • Dan Zhou;Hae Chan Ha;Goowon Yang;Ji Min Jang;Bo Kyung Park;Bo Kyung Park;In Chul Shin;Dae Kyong Kim
    • BMB Reports
    • /
    • v.56 no.8
    • /
    • pp.445-450
    • /
    • 2023
  • The development of atherosclerotic cardiovascular disease is associated with the phenotypic switching of vascular smooth muscle cells (SMCs) from a contractile to a synthetic state, leading to cell migration and proliferation. Platelet-derived growth factor-BB (PDGF-BB) modulates this de-differentiation by initiating a number of biological processes. In this study, we show that gene expression of hyaluronic acid (HA) and proteoglycan link protein 1 (HAPLN1) was upregulated during differentiation of human aortic SMCs (HASMCs) into a contractile state, but downregulated upon during PDGF-BB-induced dedifferentiation. This is the first study showing that the treatment of HASMCs with full-length recombinant human HAPLN1 (rhHAPLN1) significantly reversed PDGF-BB-induced decrease in the protein levels of contractile markers (SM22α, α-SMA, calponin, and SM-MHC), and inhibited the proliferation and migration of HASMCs induced by PDGF-BB. Furthermore, our results show that rhHAPLN1 significantly inhibited the phosphorylation of FAK, AKT, STAT3, p38 MAPK and Raf mediated by the binding of PDGF-BB to PDGFRβ. Together, these results indicated that rhHAPLN1 can suppress the PDGF-BB-stimulated phenotypic switching and subsequent de-differentiation of HASMCs, highlighting its potential as a novel therapeutic target for atherosclerosis and other vascular diseases.

Effect of Xylazine hydrochloride, Yohimbine hydrochloride, and 4-Aminopyridine on Gizzard Motility in Chicken (닭의 근위운동에 미치는 Xylazine hydrochloride, Yohimbine hydrochloride 및 4-Aminopyridine의 영향)

  • Kim, Kil-su;Park, Joon-hyoung
    • Korean Journal of Veterinary Research
    • /
    • v.28 no.1
    • /
    • pp.37-47
    • /
    • 1988
  • Xylazine hydrochloride is a widely used analgesic, sedative and muscle relaxant agent in veterinary clinic. Yohimbine hydrochloride and 4-aminopyridine are known as antagonists of xylazine hydrochloride. This paper was investigated to know that the effect of xylazine hydrochloride, yohimbine hydrochloride and 4-aminopyridine, and that whether or not antagonism of yohimbine hydrochloride and 4-aminopyridine to xylazine hydrochloride-induced effect on gizzard motility in chicken. The results were as follows. 1. After xylazine hydrochloride administration, the gizzard motility in chicken was instantly inhibited in relaxation state, and this state was prolonged in proportion to increase of dose. 2. After yohimbine hydrochloride administration, the gizzard motility in chicken showed increase of contractile frequency. 3. After 4-aminopyridine administration, the gizzard motility in chicken was gradually recovered next to decrease of contractile amplitude and frequency. 4. After the combination of yohimbine hydrochloride and 4-aminopyridine administration, the gizzard motility in chicken showed increase of amplitude and radical increase of frequency. 5. After xylazine hydrochloride administration, the relaxation time was shortened by yohimbine hydrochloride, 4-aminopyridine and the combination of yohimbine hydrochloride and 4-aminopyridine. In conclusion, the gizzard motility in chicken was inhibited by xylazine hydrochloride, and this effect was antagonized by the combination of yohimbine hydrochloride and 4-aminopyridine.

  • PDF

Tissue Engineering of Smooth Muscle under a Mechanically Dynamic Condition

  • Kim, Byung-Soo;Jeong, Sung-In;Cho, Seung-Woo;Nikolovski, Janeta;Mooney, David-J.;Lee, Soo-Hong;Jeon, O-Ju;Kim, Tae-Wan;Lim, Sang-Hyun;Hong, Yoo-Sun;Choi, Cha-Yong;Lee, Young-Moo;Kim, Soo-Hyun;Kim, Young-Ha
    • Journal of Microbiology and Biotechnology
    • /
    • v.13 no.6
    • /
    • pp.841-845
    • /
    • 2003
  • In order for engineered tissues to find clinical utility, the engineered tissues must function appropriately. However, smooth muscle (SM) tissues engineered in vitro with a conventional tissue engineering technique may not exhibit contractile functions, because smooth muscle cells (SMCs) cultured in vitro typically revert from a contractile, differentiated phenotype to a synthetic, nondifferentiated phenotype and lose their ability to contract. SMCs in vivo typically reside in mechanically dynamic environments. We hypothesized that cyclic mechanical stretch induces the features of SMCs in in vitro engineered tissues to be similar to those of SMCs in native tissues. To test the hypothesis, aortic SMCs were seeded onto elastic, three-dimensional scaffolds and cultured in vitro under a cyclic mechanical stretching condition for 4 weeks. A significant cell alignment in a direction parallel to the cyclic stretching direction was found in the SM tissues exposed to cyclic stretching. The cellular alignment and alignment direction were consistent with those of native vascular SM tissues, in which SMCs in vivo align in the radial direction (parallel to stretching direction). In control tissues (SM tissues engineered without stretching), cells randomly aligned. The expression of SM ${\alpha}-actin$ and SM myosin heavy chain, phenotypic markers of SMCs in a contractile state, was upregulated in the stretched tissues by 2.5- and 2.0-fold, respectively, compared to SMCs in the control tissues. The cellular features of alignment and contractile phenotype of SMCs in the SM tissues engineered under a mechanically dynamic environment could allow the engineered SM tissues to exhibit contractile functions.

Feline Interstitial Cystitis Enhances Mucosa-Dependent Contractile Responses to Serotonin

  • Ikeda, Youko;Wolf-Johnston, Amanda;Roppolo, James R.;Buffington, Charles A.T.;Birder, Lori
    • International Neurourology Journal
    • /
    • v.22 no.4
    • /
    • pp.246-251
    • /
    • 2018
  • Purpose: To determine whether responses to serotonin are altered in bladder strips from cats diagnosed with a naturally occurring form of bladder pain syndrome/interstitial cystitis termed feline interstitial cystitis (FIC). Methods: Full thickness bladder strips were isolated from aged matched healthy control cats and cats with clinically verified FIC. Bladder strips were mounted in an organ bath and connected to a tension transducer to record contractile activity. A serotonin dose response ($0.01-10{\mu}M$) was determined for each strip with the mucosa intact or denuded. Results: Bladder strips from control and FIC cats contracted in response to serotonin in a dose-dependent manner. The normalized force of serotonin-evoked contractions was significantly greater in bladder strips from cats with FIC (n=7) than from control cats (n=4). Removal of the mucosa significantly decreased serotonin-mediated responses in both control and FIC bladder preparations. Furthermore, the contractions in response to serotonin were abolished by $1{\mu}M$ atropine in both control and FIC bladder strips. Conclusions: The effect of serotonin on contractile force, but not sensitivity, was potentiated in bladder strips from cats with FIC, and was dependent upon the presence of the mucosa in control and FIC groups. As atropine inhibited these effects of serotonin, we hypothesize that, serotonin enhances acetylcholine release from the mucosa of FIC cat bladder strips, which could account for the increased force generated. In summary, FIC augments the responsiveness of bladder to serotonin, which may contribute to the symptoms associated with this chronic condition.