• Title/Summary/Keyword: Contour tracking

Search Result 177, Processing Time 0.021 seconds

The Identifier Recognition from Shipping Container Image by Using Contour Tracking and Self-Generation Supervised Learning Algorithm Based on Enhanced ART1 (윤곽선 추적과 개선된 ART1 기반 자가 생성 지도 학습 알고리즘을 이용한 운송 컨테이너 영상의 식별자 인식)

  • 김광백
    • Journal of Intelligence and Information Systems
    • /
    • v.9 no.3
    • /
    • pp.65-79
    • /
    • 2003
  • In general, the extraction and recognition of identifier is very hard work, because the scale or location of identifier is not fixed-form. And, because the provided image is contained by camera, it has some noises. In this paper, we propose methods for automatic detecting edge using canny edge mask. After detecting edges, we extract regions of identifier by detected edge information's. In regions of identifier, we extract each identifier using contour tracking algorithm. The self-generation supervised learning algorithm is proposed for recognizing them, which has the algorithm of combining the enhanced ART1 and the supervised teaming method. The proposed method has applied to the container images. The extraction rate of identifier obtained by using contour tracking algorithm showed better results than that from the histogram method. Furthermore, the recognition rate of the self-generation supervised teaming method based on enhanced ART1 was improved much more than that of the self-generation supervised learning method based conventional ART1.

  • PDF

Visual Tracking Technique Based on Projective Modular Active Shape Model (투영적 모듈화 능동 형태 모델에 기반한 영상 추적 기법)

  • Kim, Won
    • Journal of the Korea Society for Simulation
    • /
    • v.18 no.2
    • /
    • pp.77-89
    • /
    • 2009
  • Visual tracking technique is one of the essential things which are very important in the major fields of modern society. While contour tracking is especially necessary technique in the aspect of its fast performance with target's external contour information, it sometimes fails to track target motion because it is affected by the surrounding edges around target and weak egdes on the target boundary. To overcome these weak points, in this research it is suggested that PDMs can be obtained by generating the virtual 6-DOF motions of the mobile robot with a CCD camera and the image tracking system which is robust to the local minima around the target can be configured by constructing Active Shape Model in modular base. To show the effectiveness of the proposed method, the experiment is performed on the image stream obtained by a real mobile robot and the better performance is confirmed by comparing the experimental results with the ones of other major tracking techniques.

Object Contour Tracking Using an Improved Snake Algorithm (개선된 스네이크 알고리즘을 이용한 객체 윤곽 추적)

  • Kim, Jin-Yul;Jeong, Jae-Ki
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.48 no.6
    • /
    • pp.105-114
    • /
    • 2011
  • The snake algorithm is widely adopted to track objects by extracting the active contour of the object from background. However, it fails to track the target converging to the background if there exists background whose gradient is greater than that of the pixels on the contour. Also, the contour may shrink when the target moves fast and the snake algorithm misses the boundary of the object in its searching window. To alleviate these problems, we propose an improved algorithm that can track object contour more robustly. Firstly, we propose two external energy functions, the edge energy and the contrast energy. One is designed to give more weight to the gradient on the boundary and the other to reflect the contrast difference between the object and background. Secondly, by computing the motion vector of the contour from the difference of the two consecutive frames, we can move the snake pointers of the previous frame near the region where the object boundary is probable at the current frame. Computer experiments show that the proposed method is more robust to the complicated background than the previously known methods and can track the object with fast movement.

Automatic Face Tracking based on Active Contour Model using Two-Level Composite Gradient Map (두 단계 합성 기울기 맵을 이용한 활성 외곽선 모델 기반 자동 얼굴 추적)

  • Kim, Soo-Kyung;Jang, Yo-Jin;Hong, Helen
    • Journal of KIISE:Software and Applications
    • /
    • v.36 no.11
    • /
    • pp.901-911
    • /
    • 2009
  • In this paper, we propose a construction technique of two-level composite gradient map to automatically track a face with large movement in successive frames. Our method is composed of three main steps. First, the gradient maps with two-level resolution are generated for fast convergence of active contour. Second, to recognize the variations of face between successive frames and remove the neighbor background, weighted composite gradient map is generated by combining the composite gradient map and difference mask of previous and current frames. Third, to prevent active contour from converging local minima, the energy slope is generated by using closing operation. In addition, the fast closing operation is proposed to accelerate the processing time of closing operation. For performance evaluation, we compare our method with previous active contour model-based face tracking methods using a visual inspection, robustness test and processing time. Experimental results show that our method can effectively track the face with large movement and robustly converge to the optimal position even in frames with complicated background.

A Study on Auto Inspection System of Cross Coil Movement Using Machine Vision (머신비젼을 이용한 Cross Coil Movement 자동검사 시스템에 관한 연구)

  • Lee, Chul-Hun;Seol, Sung-Wook;Joo, Jae-Heum;Lee, Sang-Chan;Nam, Ki-Gon
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.36S no.11
    • /
    • pp.79-88
    • /
    • 1999
  • In this paper we address the tracking method which tracks only target object in image sequence including moving object. We use a contour tracking algorithm based on intensity and motion boundaries. The motion of the moving object contour in the image is assumed to be well describable by an affine motion model with a translation, a change in scale and a rotation. The moving object contour is represented by B-spline, the position and motion of which is estimated along the image sequence. we use pattern recognition to identify target object. In order to use linear Kalman Filters we decompose the estimation process into two filters. One is estimating the affine motion parameters and the other the shape of moving object contour. In some experiments with dial plate we show that this method enables us to obtain the robust motion estimates and tracking trajectories even in case of including obstructive object.

  • PDF

Face Tracking Combining Active Contour Model and Color-Based Particle Filter (능동적 윤곽 모델과 색상 기반 파티클 필터를 결합한 얼굴 추적)

  • Kim, Jin-Yul;Jeong, Jae-Ki
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.40 no.10
    • /
    • pp.2090-2101
    • /
    • 2015
  • We propose a robust tracking method that combines the merits of ACM(active contour model) and the color-based PF(particle filter), effectively. In the proposed method, PF and ACM track the color distribution and the contour of the target, respectively, and Decision part merges the estimate results from the two trackers to determine the position and scale of the target and to update the target model. By controlling the internal energy of ACM based on the estimate of the position and scale from PF tracker, we can prevent the snake pointers from falsely converging to the background clutters. We appled the proposed method to track the head of person in video and have conducted computer experiments to analyze the errors of the estimated position and scale.

Adaptive Tracking Algorithm Based on Direction Field for Automated Identification of Vessel Contour (혈관 윤곽의 자동적 식별을 위한 방향성 기반의 적응적 추적 알고리즘)

  • Park, S.I.;Lee, J.S.;Koo, J.Y.;Hong, S.H.
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1997 no.05
    • /
    • pp.414-417
    • /
    • 1997
  • This paper presents vessel contour for extracting features and segmentating narrow blood vessels down to a diameter of two pixels in digital subtraction angiographic image. We present a new tracking algorithm for contour, mainly blood vessels in DSA image, and extracting properties such as their intensities, diameters, and center lines by exploiting spatial continuity. The proposed algorithm comes to detect blood vessel's boundary using difference edge detector one of homogeneity operator and find a next centerline position by direction vector of edge information. This algorithm enhanced variation of vessel's diameter compared to Sun's tracking algorithm and lessoned to compute as direction vector decide adaptively entire vessel's direction field. The processed images are intended to support radiologists in diagnosis, radiation therapy planning, and surgical planning. The algorithm should be useful for automating angiographic analyses of blood vessels.

  • PDF

A Spiking Neural Network for Autonomous Search and Contour Tracking Inspired by C. elegans Chemotaxis and the Lévy Walk

  • Chen, Mohan;Feng, Dazheng;Su, Hongtao
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.16 no.9
    • /
    • pp.2846-2866
    • /
    • 2022
  • Caenorhabditis elegans exhibits sophisticated chemotaxis behavior through two parallel strategies, klinokinesis and klinotaxis, executed entirely by a small nervous circuit. It is therefore suitable for inspiring fast and energy-efficient solutions for autonomous navigation. As a random search strategy, the Lévy walk is optimal for diverse animals when foraging without external chemical cues. In this study, by combining these biological strategies for the first time, we propose a spiking neural network model for search and contour tracking of specific concentrations of environmental variables. Specifically, we first design a klinotaxis module using spiking neurons. This module works in conjunction with a klinokinesis module, allowing rapid searches for the concentration setpoint and subsequent contour tracking with small deviations. Second, we build a random exploration module. It generates a Lévy walk in the absence of concentration gradients, increasing the chance of encountering gradients. Third, considering local extrema traps, we develop a termination module combined with an escape module to initiate or terminate the escape in a timely manner. Experimental results demonstrate that the proposed model integrating these modules can switch strategies autonomously according to the information from a single sensor and control steering through output spikes, enabling the model worm to efficiently navigate across various scenarios.

Vision-Based Finger Action Recognition by Angle Detection and Contour Analysis

  • Lee, Dae-Ho;Lee, Seung-Gwan
    • ETRI Journal
    • /
    • v.33 no.3
    • /
    • pp.415-422
    • /
    • 2011
  • In this paper, we present a novel vision-based method of recognizing finger actions for use in electronic appliance interfaces. Human skin is first detected by color and consecutive motion information. Then, fingertips are detected by a novel scale-invariant angle detection based on a variable k-cosine. Fingertip tracking is implemented by detected region-based tracking. By analyzing the contour of the tracked fingertip, fingertip parameters, such as position, thickness, and direction, are calculated. Finger actions, such as moving, clicking, and pointing, are recognized by analyzing these fingertip parameters. Experimental results show that the proposed angle detection can correctly detect fingertips, and that the recognized actions can be used for the interface with electronic appliances.

The Study of Pre-processing Algorithm for Improving Efficiency of Optical Flow Method on Ultrasound Image (초음파 영상에서의 Optical Flow 추적 성능 향상을 위한 전처리 알고리즘 개발 연구)

  • Kim, Sung-Min;Lee, Ju-Hwan;Roh, Seung-Gyu;Park, Sung-Yun
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.47 no.5
    • /
    • pp.24-32
    • /
    • 2010
  • In this study, we have proposed a pre-processing algorithm newly developed for improving the tracking efficiency of the optical flow method. The developed pre-processing algorithm consists of a median filter, binarization, morphology, canny edge, contour detecting and an approximation method. In order to evaluate whether the optical flow tracking capacity increases, this study applied the pre-processing algorithm to the Lucas-Kanade(LK) optical flow algorithm, and comparatively analyzed its images and tracking results with those of optical flow without the pre-processing algorithm and with the existing pre-processing algorithm(composed of median filter and histogram equalization). As a result, it was observed that the tracking performance derived from the LK optical flow algorithm with the pre-processing algorithm, shows better tracking accuracy, compared to the one without the pre-processing algorithm and the one with the existing pre-processing algorithm. It seems to have resulted by successful segmentation for characteristic areas and subdivision into inner and outer contour lines.