• Title/Summary/Keyword: Contour Detection

Search Result 226, Processing Time 0.032 seconds

Moving Object Contour Detection Using Spatio-Temporal Edge with a Fixed Camera (고정 카메라에서의 시공간적 경계 정보를 이용한 이동 객체 윤곽선 검출 방법)

  • Kwak, Jae-Ho;Kim, Whoi-Yul
    • Journal of Broadcast Engineering
    • /
    • v.15 no.4
    • /
    • pp.474-486
    • /
    • 2010
  • In this paper, we propose a new method for detection moving object contour using spatial and temporal edge. In general, contour pixels of the moving object are likely present around pixels with high gradient value along the time axis and the spatial axis. Therefore, we can detect the contour of the moving objects by finding pixels which have high gradient value in the time axis and spatial axis. In this paper, we introduce a new computation method, termed as temporal edge, to compute an gradient value along the time axis for any pixel on an image. The temporal edge can be computed using two input gray images at time t and t-2 using the Sobel operator. Temporal edge is utilized to detect a candidate region of the moving object contour and then the detected candidate region is used to extract spatial edge information. The final contour of the moving object is detected using the combination of these two edge information, which are temporal edge and spatial edge, and then the post processing such as a morphological operation and a background edge removing procedure are applied to remove noise regions. The complexity of the proposed method is very low because it dose not use any background scene and high complex operation, therefore it can be applied to real-time applications. Experimental results show that the proposed method outperforms the conventional contour extraction methods in term of processing effort and a ghost effect which is occurred in the case of entropy method.

A Comparison of Active Contour Algorithms in Computer-aided Detection System for Dental Cavity using X-ray Image (X선 영상 기반 치아와동 컴퓨터 보조검출 시스템에서의 동적윤곽 알고리즘 비교)

  • Kim, Dae-han;Heo, Chang-hoe;Cho, Hyun-chong
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.67 no.12
    • /
    • pp.1678-1684
    • /
    • 2018
  • Dental caries is one of the most popular oral disease. The aim of automatic dental cavity detection system is helping dentist to make accurate diagnosis. It is very important to separate cavity from the teeth in the detection system. In this paper, We compared two active contour algorithms, Snake and DRLSE(Distance Regularized Level Set Evolution). To improve performance, image is selected ROI(region of interest), then applied bilateral filter, Canny edge. In order to evaluate the algorithms, we applied to 7 tooth phantoms from incisor to molar. Each teeth contains two cavities of different shape. As a result, Snake is faster than DRLSE, but Snake has limitation to compute topology of objects. DRLSE is slower but those of performance is better.

A Study of Computer-aided Detection System for Dental Cavity on Digital X-ray Image (디지털 X선 영상을 이용한 치아 와동 컴퓨터 보조 검출 시스템 연구)

  • Heo, Chang-hoe;Kim, Min-jeong;Cho, Hyun-chong
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.8
    • /
    • pp.1424-1429
    • /
    • 2016
  • Segmentation is one of the first steps in most diagnosis systems for characterization of dental caries in an early stage. The purpose of automatic dental cavity detection system is helping dentist to make more precise diagnosis. We proposed the semi-automatic method for the segmentation of dental caries on digital x-ray images. Based on a manually and roughly selected ROI (Region of Interest), it calculated the contour for the dental cavity. A snake algorithm which is one of active contour models repetitively refined the initial contour and self-examination and correction on the segmentation result. Seven phantom tooth from incisor to molar were made for the evaluation of the developed algorithm. They contained a different form of cavities and each phantom tooth has two dental cavities. From 14 dental cavities, twelve cavities were accurately detected including small cavities. And two cavities were segmented partly. It demonstrates the practical feasibility of the dental lesion detection using Computer-aided Detection (CADe).

Facial Boundary Detection using an Active Contour Model (활성 윤곽선 모델을 이용한 얼굴 경계선 추출)

  • Chang Jae Sik;Kim Eun Yi;Kim Hang Joon
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.42 no.1
    • /
    • pp.79-87
    • /
    • 2005
  • This paper presents an active contour model for extracting accurate facial regions in complex environments. In the model, a contour is represented by a zero level set of level function φ, and evolved via level set partial differential equations. Then, unlike general active contours, skin color information that is represented by 2D Gaussian model is used for evolving and slopping a curve, which allows the proposed method to be robust to noise and varying pose. To assess the effectiveness of the proposed method it was tested with several natural scenes, and the results were compared with those of geodesic active contours. Experimental results demonstrate the superior performance of the proposed method.

Difference Edge Acquisition for B-spline Active Contour-Based Face Detection (B-스플라인 능동적 윤곽 기반 얼굴 검출을 위한 차 에지 영상 획득)

  • Kim, Ga-Hyun;Jung, Ho-Gi;Suhr, Jae-Kyu;Kim, Jai-Hie
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.47 no.6
    • /
    • pp.19-27
    • /
    • 2010
  • This paper proposes a method for enhancing detection performance and reducing computational cost when detecting a human face by applying B-spline active contour to the frame difference of consecutive images. Firstly, the method estimates amount of user's motion using kurtosis. If the kurtosis is smaller than a pre-defined threshold, it is considered that the amount of user's motion is insufficient and thus the contour fitting is not applied. Otherwise, the contour fitting is applied by exploiting the fact that the amount of motion is sufficient. Secondly, for the contour fitting, difference edges are detected by combining the distance transformation of the binarized frame difference and the edges of current frame. Lastly, the face is located by assigning the contour fitting process to the detected difference edges. Kurtosis-based motion amount estimation can reduce a computational cost and stabilize the results of the contour fitting. In addition, distance transformation-based difference edge detection can enhance the problems of contour lag and discontinuous difference edges. Experimental results confirm that the proposed method can reduce the face localization error caused by the contour lag and discontinuity of edges, and decrease the computational cost by omitting approximately 39% of the contour fitting.

Interactive Typography System using Combined Corner and Contour Detection

  • Lim, Sooyeon;Kim, Sangwook
    • International Journal of Contents
    • /
    • v.13 no.1
    • /
    • pp.68-75
    • /
    • 2017
  • Interactive Typography is a process where a user communicates by interacting with text and a moving factor. This research covers interactive typography using real-time response to a user's gesture. In order to form a language-independent system, preprocessing of entered text data presents image data. This preprocessing is followed by recognizing the image data and the setting interaction points. This is done using computer vision technology such as the Harris corner detector and contour detection. User interaction is achieved using skeleton information tracked by a depth camera. By synchronizing the user's skeleton information acquired by Kinect (a depth camera,) and the typography components (interaction points), all user gestures are linked with the typography in real time. An experiment was conducted, in both English and Korean, where users showed an 81% satisfaction level using an interactive typography system where text components showed discrete movements in accordance with the users' gestures. Through this experiment, it was possible to ascertain that sensibility varied depending on the size and the speed of the text and interactive alteration. The results show that interactive typography can potentially be an accurate communication tool, and not merely a uniform text transmission system.

A Study on the Improved Line Detection Method for Pipeline Recognition of P&ID (P&ID의 파이프라인 인식 향상을 위한 라인 검출 개선에 관한 연구)

  • Oh, Sangjin;Chae, Myeonghoon;Lee, Hyun;Lee, Younghwan;Jeong, Eunkyung;Lee, Hyunsik
    • Plant Journal
    • /
    • v.16 no.4
    • /
    • pp.33-39
    • /
    • 2020
  • For several decades, productivity in construction industry has been regressed and it is inevitable to improve productivity for major EPC players. One of challenges to achieve this goal is automatically extracting information from imaged drawings. Although computer vision technique has been advanced rapidly, it is still a problem to detect pipe lines in a drawing. Earlier works for line detection have problems that detected line elements be broken into small pieces and accuracy of detection is not enough for engineers. Thus, we adopted Contour and Hough Transform algorithm and reinforced these to improve detection results. First, Contour algorithm is used with Ramer Douglas Peucker algorithm(RDP). Weakness of contour algorithm is that some blank spaces are occasionally found in the middle of lines and RDP covers them around 17%. Second, HEC Hough Transform algorithm, we propose on this paper, is improved version of Hough Transform. It adopted iteration of Hough Transform and merged detected lines by conventional Hough Transform based on Euclidean Distance. As a result, performance of Our proposed method improved by 30% than previous.

A Study on 3Dimensional Automatic Boundaries Detection on Medical Images or Radiation Therapy Planning (방사선 치료 계획 장치를 위한 의료 영상의 3차원적 자동 경계선 검출에 관한 연구)

  • Choi, Eun-Jin;Suh, Doug-Young
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1997 no.11
    • /
    • pp.172-175
    • /
    • 1997
  • Outline contour is detected firstly to simulate dose distribution in radiation therapy planning system. In this paper, we developed automatic contour detection system using temporal and spatial relationships of image sequences. The low level image analysis involves the use of directional gradient edge operators and Laplacian operator. The High level portion of algorithm uses a knowledge-based strategy that incorporates fuzzy resoning method.

  • PDF

Vision-Based Finger Action Recognition by Angle Detection and Contour Analysis

  • Lee, Dae-Ho;Lee, Seung-Gwan
    • ETRI Journal
    • /
    • v.33 no.3
    • /
    • pp.415-422
    • /
    • 2011
  • In this paper, we present a novel vision-based method of recognizing finger actions for use in electronic appliance interfaces. Human skin is first detected by color and consecutive motion information. Then, fingertips are detected by a novel scale-invariant angle detection based on a variable k-cosine. Fingertip tracking is implemented by detected region-based tracking. By analyzing the contour of the tracked fingertip, fingertip parameters, such as position, thickness, and direction, are calculated. Finger actions, such as moving, clicking, and pointing, are recognized by analyzing these fingertip parameters. Experimental results show that the proposed angle detection can correctly detect fingertips, and that the recognized actions can be used for the interface with electronic appliances.

Contour detection of hippocampus using Dynamic Contour Model and Region Growing (영역확장법과 동적외곽선모델을 이용한 해마(hippocampus)의 외곽선 검출)

  • Jang, D.P.;Kim, H.D.;Lee, D.S.;Kim, S.I.
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1997 no.05
    • /
    • pp.116-118
    • /
    • 1997
  • In hippocampal morphology Abnormalities, including unilateral or bilateral volume loss, are known to occur in epilepsy, Alzheimer's disease, and in certain amnestic syndromes. To detect such abnormalities in hippocampal morphology, we present a method that combines region growing and dynamic contour model to detect hippocampus from MRI brain data. The segmentation process is performed two steps. First region growing with a seed point is performed in the region of hippocampus and the initial contour of dynamic contour model is obtained. Second, the initial contour is modified on the basis of criteria that integrate energy with contour smoothness and the image gradient along the contour. As a result, this method improves fairly sensitivity to the choice of the initial seed point, which is often seen by conventional contour model. The power and practicality of this method have been tested on two brain datasets. Thus, we have developed an effective algorithm to extract hippocampus from MRI brain data.

  • PDF