• Title/Summary/Keyword: Continuous wave terahertz

Search Result 15, Processing Time 0.018 seconds

Nondestructive Evaluation in the Defects of FRP Composites By Using Terahertz Waves (테라헤르츠파를 이용한 FRP 복합재료의 비파괴결함평가)

  • Im, Kwang-Hee;Kim, Ji-Hoon;Hsu, David K.
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.21 no.2
    • /
    • pp.252-258
    • /
    • 2012
  • A study of terahertz waves was made for the nondestructive evaluation of FRP (Fiber reinforced plastics) composite materials. The terahertz systems were consisted of time domain spectroscopy (TDS) and continuous wave (CW). The composite materials investigated include both non-conducting polymeric composites and conducting carbon fiber composites. Terahertz signals in the TDS mode resembles that of ultrasound; however, unlike ultrasound, a terahertz pulse was not able to detect a material with conductivity. The CFRP (Carbon fiber reinforced plastics) laminates were utilized for confirming the experimentation in the terahertz NDE. In carbon composites the penetration of terahertz waves is quite limited and the detection of flaws is strongly affected by the angle between the electric field direction of the terahertz waves and the intervening fiber directions. A refractive index (n) was defined as one of mechanical properties; so a method was obtained in order solve the "n" in the material with non-conductivity. The usefulness and limitations of terahertz radiation are investigated for the NDE of FRP composites.

Terahertz Time Domain Spectroscopy, T-Ray Imaging and Wireless Data Transfer Technologies

  • Paek, Mun-Cheol;Kwak, Min-Hwan;Kang, Seung-Beom;Kim, Sung-Il;Ryu, Han-Cheol;Choi, Sang-Kuk;Jeong, Se-Young;Kang, Dae-Won;Jun, Dong-Suk;Kang, Kwang-Yong
    • Journal of electromagnetic engineering and science
    • /
    • v.10 no.3
    • /
    • pp.158-165
    • /
    • 2010
  • This study reviewed terahertz technologies of time domain spectroscopy, T-ray imaging, and high rate wireless data transfer. The main topics of the terahertz research area were investigation of materials and package modules for terahertz wave generation and detection, and setup of the terahertz system for time domain spectroscopy(TDS), T-ray imaging and sub-THz wireless communication. In addition to Poly-GaAs film as a photoconductive switching antenna material, a table-top scale for the THz-TDS/imaging system and terahertz continuous wave(CW) generation systems for sub-THz data transfer and narrow band T-ray imaging were designed. Dielectric properties of ferroelectric BSTO($Ba_xSr_{1-x}TiO_3$) films and chalcogenide glass systems were characterized with the THz-TDS system at the THz frequency range. Package modules for terahertz wave transmitter/receiver(Tx/Rx) photoconductive antenna were developed.

Terahertz Imaging Using Compact Continuous Wave Sub-Terahertz System (소형 CW Sub-THz 시스템을 이용한 테라헤르츠 이미징)

  • Jang, Jin-Seok;Kwon, Il-Bum;Yoon, Dong-Jin;Seo, Dae-Cheol
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.21 no.4
    • /
    • pp.340-351
    • /
    • 2010
  • This paper presented compact CW sub-THz imaging system using the terahertz transmitter(Tx) that generates 0.34 THz electromagnetic wave based on electronic device. Using 0.34 THz electromagnetic wave generated by Tx, we measured transmitting terahertz wave magnitude and phase information respectively with terahertz receiver(Rx) based on sub harmonic mixer. This paper measured and compared images of several samples to obtain better imaging results by changing time delay and step distance of scanning stage which affect image resolution. Also, through the imaging measurement of various samples, we were able to assure possibility of application of terahertz wave.

Nondestructive Imaging of an Object Using the Compact Continuous-Wave Sub-Terahertz Imaging System (소형 CW Sub-THz 이미징 시스템을 이용한 물체의 비파괴 이미징)

  • Jang, Jin-Seok;Kwon, Il-Bub;Yoon, Dong-Jin;Seo, Dae-Cheol
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.30 no.4
    • /
    • pp.352-358
    • /
    • 2010
  • This paper presented compact CW sub-THz imaging system using the terahertz transmitter(Tx) that generating 0.34 THz electromagnetic wave on based electronic device. Using 0.34 THz electromagnetic wave generated by Tx, we transmitted to sample by point by point scan method and measured transmitting terahertz wave magnitude and phase information respectively with terahertz receiver(Rx) based on sub harmonic mixer. This paper measured and compared images of several samples to obtain better imaging results by changing time delay and step distance of scanning stage which affect image resolution. Also, through the imaging measurement of various samples, we were able to assure possibility of application of terahertz wave.

Nondestructive Evaluation of the Turbine Blade of Wind Energy By Using T-Ray (T-ray를 이용한 풍력터빈 브레이드 비파괴결함평가)

  • Im, Kwang-Hee;Jeong, Jong-An;Hsu, David K.;Lee, Kil-Sung
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.21 no.1
    • /
    • pp.102-108
    • /
    • 2012
  • A study of terahertz waves (T-ray) was made for the nondestructive evaluation of FRP (Fiber reinforced plastics) composite materials. The to-be-used systems were time domain spectroscopy (TDS) and continuous wave (CW). The composite materials investigated include both turbine blades of wind energy (non-conducting polymeric composites) and conducting carbon fiber composites. Terahertz signals in the TDS mode resembles that of ultrasound; however, unlike ultrasound, a terahertz pulse was not able to detect a material with conductivity. This was demonstrated in CFRP (Carbon fiber reinforced plastics) laminates. Refractive index (n) was defined as one of mechanical properties; so a method was solved in order solve the "n" in the material with the cut parts of the turbine blades of wind energy. The defects and anomalies investigated by terahertz radiation were foreign material inclusions and simulated disband. Especially, it is found that the T-ray went through the turbine blade with greater thickness (about 90mm).

Imaging Technique Based on Continuous Terahertz Waves for Nondestructive Inspection (비파괴검사를 위한 연속형 테라헤르츠 파 기반의 영상화 기술)

  • Oh, Gyung-Hwan;Kim, Hak-Sung
    • Journal of Sensor Science and Technology
    • /
    • v.27 no.5
    • /
    • pp.328-334
    • /
    • 2018
  • The paper reviews an improved continuous-wave (CW) terahertz (THz) imaging system developed for nondestructive inspection, such as CW-THz quasi-time-domain spectroscopy (QTDS) and interferometry. First, a comparison between CW and pulsed THz imaging systems is reported. The CW-THz imaging system is a simple, fast, compact, and relatively low-cost system. However, it only provides intensity data, without depth and frequency- or time-domain information. The pulsed THz imaging system yields a broader range of information, but it is expensive because of the femtosecond laser. Recently, to overcome the drawbacks of CW-THz imaging systems, many studies have been conducted, including a study on the QTDS system. In this system, an optical delay line is added to the optical arm leading to the detector. Another system studied is a CW-THz interferometric imaging system, which combines the CW-THz imaging system and far-infrared interferometer system. These systems commonly obtain depth information despite the CW-THz system. Reportedly, these systems can be successfully applied to fields where pulsed THz is used. Lastly, the applicability of these systems for nondestructive inspection was confirmed.

Improvement of Phase Noise Characteristics of Continuous Wave in the Sub-Millimeter Bands Generated by Photomixing Using Polarization and Phase Mismatch (편광 및 위상 부정합을 이용한 광혼합을 통하여 발생된 서브 밀리미터파 대역 연속파의 위상 잡음 특성 개선)

  • Kim, Sung-Il;Kang, Kwang-Yong
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.21 no.6
    • /
    • pp.617-626
    • /
    • 2010
  • In this paper, we have proposed and experimentally performed a polarization and phase control method of an optical signal which has same wavelength with the optical carrier to improve phase characteristics of a continuous wave(CW) generated by the double sideband-suppressed carrier(DSB-SC) as one of the famous photomixing technique for making sub-millimeter and terahertz waves. A polarization and phase controlled optical signal has been coupled with the general DSB-SC on an optical coupler. The output of the optical coupler is then photomixed by a photomixer. From our analysis and measurement results, we have found that the amplitude of the generated sub-mm and terahertz CW signal is higher 1.5 dB and the phase noise is lower about 3 dB@10 kHz offset frequency than the general DSBSC. Consequently, since our proposed method has improved the amplitude and phase noise of CW signals in the sub-mm and terahertz bands, it can be helpful results to make low cost CW generator in sub-millimeter and subterahertz bands.

NDE Inspecting Techniques for Wind Turbine Blades Using Terahertz Waves (테라헤르츠파를 이용한 풍력터빈 블레이드 NDE 탐상 평가기법)

  • Im, Kwang-Hee;Kim, Sun-Kyu;Jung, Jong-An;Cho, Young-Tae;Woo, Yong-Deuck
    • Journal of Advanced Engineering and Technology
    • /
    • v.11 no.4
    • /
    • pp.245-251
    • /
    • 2018
  • Terahertz waves (T-ray) was extensively studied for the NDE (nondestructive evaluation) of characterization of trailing edges for a use of turbines composed with composite materials. The used NDE system were consisted of both CW(Continuous wave) and TDS (Time domain spectroscopy). The FRP composites were utilized for two kinds of both trailing edges of wind energy (non-conducting polymeric composites) and carbon fiber composites with conducting properties. The signals of T-ray in the TDS (Time domain spectroscopy) mode resembles almost that of ultrasound waves; however, a terahertz pulse could not penetrate a material with conductivity unlike ultrasound. Also, a method was suggested to obtain the "n" in the materials, which is called the refractive index (n). The data of refractive index (n) could be solved for the trailing edges. The trailing edges were scanned for characterization and inspection. C-scan and B-scan images were obtained and best optimal NDE techniques were suggested for complicated geometry samples by terahertz radiation. Especially, it is found that the defect image of T-ray corresponded with defect locations for the trailing edges of wind mill.

SOA-Integrated Dual-Mode Laser and PIN-Photodiode for Compact CW Terahertz System

  • Lee, Eui Su;Kim, Namje;Han, Sang-Pil;Lee, Donghun;Lee, Won-Hui;Moon, Kiwon;Lee, Il-Min;Shin, Jun-Hwan;Park, Kyung Hyun
    • ETRI Journal
    • /
    • v.38 no.4
    • /
    • pp.665-674
    • /
    • 2016
  • We designed and fabricated a semiconductor optical amplifier-integrated dual-mode laser (SOA-DML) as a compact and widely tunable continuous-wave terahertz (CW THz) beat source, and a pin-photodiode (pin-PD) integrated with a log-periodic planar antenna as a CW THz emitter. The SOA-DML chip consists of two distributed feedback lasers, a phase section for a tunable beat source, an amplifier, and a tapered spot-size converter for high output power and fiber-coupling efficiency. The SOA-DML module exhibits an output power of more than 15 dBm and clear four-wave mixing throughout the entire tuning range. Using integrated micro-heaters, we were able to tune the optical beat frequency from 380 GHz to 1,120 GHz. In addition, the effect of benzocyclobutene polymer in the antenna design of a pin-PD was considered. Furthermore, a dual active photodiode (PD) for high output power was designed, resulting in a 1.7-fold increase in efficiency compared with a single active PD at 220 GHz. Finally, herein we successfully show the feasibility of the CW THz system by demonstrating THz frequency-domain spectroscopy of an ${\alpha}$-lactose pellet using the modularized SOA-DML and a PD emitter.

Terahertz Non-destructive Testing Technology for Industrial Applications (산업용 테라헤르츠 비파괴 검사 기술)

  • Lee, E.S.;Moon, K.;Lee, I.M.;Park, D.W.;Choi, D.H.;Shin, J.H.;Kim, H.S.;Choi, D.H.;Park, K.H.
    • Electronics and Telecommunications Trends
    • /
    • v.33 no.3
    • /
    • pp.59-69
    • /
    • 2018
  • Terahertz (THz) imaging and spectroscopy have been developed as non-destructive testing methods for various industrial applications. However, they have not been widely adopted in real applications owing to a high system price and the large size of conventional THz time-domain spectroscopy systems, which are based on ultrashort optical pulse lasers. Recently, various types of compact THz emitters and detectors have become available. As a result, THz non-destructive test (NDT) systems have become viable solutions. Herein, we briefly review the recent advances in THz NDT techniques adopting continuous-wave THz systems, including our recent results of a THz-based waterproof test system and an electrical connection inspection system for car manufacturing.