• Title/Summary/Keyword: Continuous input current

Search Result 133, Processing Time 0.033 seconds

Characteristics analysis of single-phase high power factor PWM boost rectifier (단상 고역률 PWM 승압형 정류기의 특성해석)

  • Kim, J.Y.;Mun, S.P.;Suh, K.Y.;Kim, Y.M.;Kim, H.J.
    • Proceedings of the KIEE Conference
    • /
    • 2006.07b
    • /
    • pp.1209-1210
    • /
    • 2006
  • This paper presents a single phase high power factor PWM boost rectifier featuring soft commutat -ion of the active switches at zero current. It incorporates the most desirable properties of conventional PWM and soft switching resonant techniques. The input current shaping is achieved with average current mode control and continuous inductor current mode. This new PWM converter provides zero current turn on and turn off of the active switches, and it is suitable for high power applications employing IGBT's. The principle of operation, the theoretical analysis, a design example, and experi -mental results from a laboratory prototype rated at 1.6[kW] with 400[Vdc] output voltage are presented. The measured efficiency and the power factor were 96.2[%] and 0.99[%], respectively, with an input current THD equal to 3.94[%], for an input voltage with THD equal to 3.8[%], at rated load.

  • PDF

The 1.6[kW] Class Single Phase ZCS-PWM High Power Factor Boost Rectifier (1.6[kW]급 단상 ZCS-PWM HPF 승압형 정류기)

  • Mun, S.P.;Kim, S.I.;Yun, Y.T.;Kim, Y.M.;Lee, H.W.;Suh, K.Y.
    • Proceedings of the KIEE Conference
    • /
    • 2003.07b
    • /
    • pp.1169-1171
    • /
    • 2003
  • This paper presents a 1.6[kW]class single phase high power factor(HPF) pulse width modulation(PWM) boost rectifier featuring soft commutation of the active switches at zero current. It incorporates the most desirable properties of conventional PWM and soft switching resonant techniques. The input current shaping is achieved with average current mode control and continuous inductor current mode. This new PWM converter provides zero current turn on and turn off of the active switches, and it is suitable for high power applications employing insulated gate bipolar transistors(IGBT'S). The principle of operation, the theoretical analysis, a design example, and experimental results from laboratory prototype rated at 1.6[kW] with 400[Vdc] output voltage are presented. The measured efficiency and the power factor were 96.2[%] and 0.99[%], respectively, with an input current Total Harmonic Distortion(THD) equal to 3.94[%], for an input voltage with THD equal to 3.8[%], at rated load.

  • PDF

Study of DC-DC Converter with Continuous output Current for Battery Charger (배터리 충전기를 위한 연속전류를 갖는 DC-DC 컨버터에 관한 연구)

  • Bayasgalan, Bayasgalan;Kim, Hong-Sung;Kim, Young-Sik;Lee, Young-Jin;Zayabaatar, Zayabaatar;Choe, Gyu-Ha
    • Proceedings of the KIPE Conference
    • /
    • 2008.06a
    • /
    • pp.193-195
    • /
    • 2008
  • This paper proposed dc-dc converter with continuous output current for battery charger. If we charge energy storage device by conventional boost converter, current flows into the discontinuous and as a result reduces the life-time of battery. The output voltage of dc-dc converter should be higher than voltage of across the battery, specially if charging by PV there is a fluctuation of voltage due change of insolation and temperature, therefore will boost and regulate this voltage. The proposal converter includes forward converter and the output voltage of the proposal converter looks like an input voltage and forward output voltage's add. This topology was tested on simulation and experimentation. Simulation and experimentation results indicated that the proposal topology is useful for battery charging because the output current of the converter flows continuously and perfectly.

  • PDF

A Study on the Continuous Current Mode $S^4$-PFC Converter using Auxiliary Resonant Circuit (공진형 보조 회로를 이용한 연속 전류 모드 $S^4$-PFC 컨버터에 관한 연구)

  • Han, Dae-Hee;Kim, Yong;Bae, Jin-Yong;Lee, Eun-Young;Kwon, Soon-Do
    • Proceedings of the KIEE Conference
    • /
    • 2002.11d
    • /
    • pp.200-203
    • /
    • 2002
  • This paper presents Continuous-current mode of $S^4$-PFC(Single-Stage Single-switch Power Factor Correction) converter. Proposed converter operates in the continueous current mode(CCM) at full load and discontinuous current mode(DCM) at light load. So, characteristic of proposed converter is no bus voltage stress and Zero Voltage Switching(ZVS) using resonant auxiliary circuit. And. This paper presents characteristic of $S^4$-PFC converter and effect of circuit parameter of proposed converter through the input inductor, PFC capacitor's variation. All of these theory and characteristic verified through the experiment with a 72W(12V, 6A), $90^{kHz}$ prototype converter.

  • PDF

Modulated Carrier Control for Interleaved Continuous Conduction Mode(CCM) Boost Power Factor Correction Converter

  • Kim, Hye-jin;Choi, Kyu-sik;Cho, B.H.;Choi, Hang-seok
    • Proceedings of the KIPE Conference
    • /
    • 2012.07a
    • /
    • pp.195-196
    • /
    • 2012
  • In recent years, in an effort to improve the efficiency and the power density of the front-end power factor correction(PFC), the interleaving of multiple converter is employed. The conventional interleaved continuous conduction mode(CCM) boost PFC converter requires input and output voltage sensing and three current sensing to obtain current balancing between modules. In this paper, the interleaved CCM PFC converter based on modulated carrier control is proposed. With the proposed method, two phase interleaved PFC can be realized simply without line voltage sensing resistor and can achieve current balancing without additional current sensing resistor on common return path. The simulation studies are carried out to verify the effectiveness of the proposed control scheme.

  • PDF

Design of Interleaved Boost Power Factor Preregulator (Interleaved 승압형 역률 전치보상 컨버터의 설계)

  • Heo, T.W.;Noh, T.G.;Jung, J.R.;Ahn, I.M.;Son, Y.D.;Woo, J.I.
    • Proceedings of the KIEE Conference
    • /
    • 2002.07b
    • /
    • pp.1123-1125
    • /
    • 2002
  • In this paper, interleaved boost converter is applied as a pre-regulator in switch mode power supply. Interleaved Boost Power Factor Preregulator (IBPFP) can reduce input current ripple as a simple voltage control loop only without inner current loop, because input current is divided each 50% by two switching devices. IBPFP can be classified as three cases from duty ratio condition in continuous current mode and be carried out state space averaging small signal modeling. According to modeling, the PID controller is applied and voltage control loop is constructed for suitable design condition. From frequency domain analysis, it is verified that control system is satisfied with design condition of switch mode power supply.

  • PDF

A Study on the Power Factor Improvement of Single-Phase Bridgeless Voltage Doubler Converter (단상 브리지리스 배전압 변환기의 역률 개선에 관한 연구)

  • Koo, Do-Yeon;Kim, Dong-Wook;Lim, Seung-Beom;Hong, Soon-Chan
    • Proceedings of the KIPE Conference
    • /
    • 2011.11a
    • /
    • pp.169-170
    • /
    • 2011
  • PFC(Power Factor Correction) converters are commonly designed for CCM(Continuous Conduction Mode). However, DCM(Discontinuous Conduction Mode) appears in the input current near the ZCP(Zero Crossing Point) at light loads, resulting in input current distortion. It is caused by inaccurate average current values obtained in DCM. This paper studies a simple digital control scheme that can be operated in both CCM and DCM with minimal changes to the CCM average current control structure.

  • PDF

Active CDS-Clamped L-Type Current-Fed Isolated DC-DC Converter

  • Nguyen, Minh-Khai;Duong, Truong-Duy;Lim, Young-Cheol;Choi, Joon-Ho
    • Journal of Power Electronics
    • /
    • v.18 no.4
    • /
    • pp.955-964
    • /
    • 2018
  • In this paper, an active capacitor-diode-switch (CDS) snubber is proposed for L-type current-fed isolated DC-DC converters. The proposed CDS-clamped converter has a number of advantages. It can achieve wide range zero-voltage switching (ZVS) on two switches, a continuous input current with a low ripple, a reduction of one active switch and high efficiency. The operating principles, analysis and parameter design guideline are presented. A 300 W prototype is built to test the proposed converter. Simulation and experimental results are shown at 30 V input voltage and 400 V output voltage.

Time-Delay Effects on DC Characteristics of Peak Current Controlled Power LED Drivers

  • Kim, Marn-Go;Jung, Young-Seok
    • Proceedings of the KIPE Conference
    • /
    • 2011.07a
    • /
    • pp.481-482
    • /
    • 2011
  • New discrete time domain models for the peak current controlled (PCC) power LED drivers in continuous conduction mode include for the first time the effects of time delay in the pulse-width-modulator. Realistic amounts of time delay are found to have significant effects on the average output LED current and on the critical inductor value at the boundary between two conduction modes. Especially, the time delay can provide an accurate LED current for the PCC buck converter with a wide input voltage. The models can also predict the critical inductor values at the mode boundary as functions of the input voltage and the time delay.

  • PDF

A Study of Interleaved AC/DC Converter to Improved Power Factor and Current Ripple (역률과 전류 리플을 개선한 인터리브 AC/DC 컨버터에 관한 연구)

  • Seo, Sang-Hwa;Kim, Yong;Kwon, Soon-Do;Bae, Jin-Yong;Eom, Tae-Min
    • Proceedings of the KIEE Conference
    • /
    • 2009.04b
    • /
    • pp.152-155
    • /
    • 2009
  • In high power application, PFC(Power Factor Correction) pre-regulators are generally required. PFC pre-regulators could achieve unity power factor, reduce line input current harmonics and utilize full line power. Interleaving PFC converters could reduce input ripple current, output capacitor ripple current and inductor size. With this closed loop interleaving method, both two phase converters are working at the boundary between continuous and discontinuous mode and accurate 180 degree phase shift is achieved. Implementation of this strategy could be easily integrated to the control chip. Finally, experimental results of a two-phase interleaved boost PFC are presented to verify the discussed features.

  • PDF