• Title/Summary/Keyword: Continuous flow system

Search Result 505, Processing Time 0.027 seconds

Simulation of Heat Supply Control of Continuous Heating System of Multistoried Apartment in Consideration of Radiation Heat Transfer (복사열전달을 고려한 고층아파트 연속난방 열공급제어 시뮬레이션)

  • Choi, Y.D.;Hong, J.K.;Yoon, J.H.;Lee, N.H.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.6 no.2
    • /
    • pp.78-92
    • /
    • 1994
  • Thermal performance of pipe network of continuous heating system controlled by thermostat and flow control valve was simulated in consideration of radiation heat transfer and solved by linear analysis method. Thermal performance of real apartment building with radiant floor heating system was simulated by equivalence heat resistance-capacity method. This method enables to simulate the unsteady variation of temperature or each element of building. Heat transfer characteristics of each element were also investigated.

  • PDF

An Experimental Study of Dynamic Type Ice Storage System Using Magneticfluid (자성유체를 이용한 다이나믹형 빙축열 시스템에 관한 실험적 연구)

  • Hwang, Seung-Sic
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.28 no.12
    • /
    • pp.1484-1493
    • /
    • 2004
  • In this study, it induced to a conclusion below by experiment consideration to regarding an effective supercooling ends method of the flow cooling water in a tube of continuous ice making method and the static cooling water in a tube of continuous ice making method which used magneticfluid in a dynamic type ice storage system. Continuous ice making in a tube of the flow cooling water was shortened about 12 minutes until supercooling ends that case which gave vertical eccentricity rotation magnetic field 120rpm than did not provide magnetic field by experimental result that was tested to supercooling ends effect from shape control of magneticfluid. Continuous ice making method in a tube of the static cooling water compared with and reviewed the case that was not provided with the magnetic field and exposed cooling surface instantaneously by magnetic field. It confirmed that supercooling degree $\Delta$ $T_{c}$, $\Delta$ $T_{s}$, and $\Delta$ $T_{w}$ became lower because of heat transfering increasing by the occurrence of natural convection between after cooling starting progress time 1∼3 minutes if it did not give a magnetic field, and peformed the supercooling ends when natural convection occurred confirmed that refrigerating capacity was better. That relation $\Delta$ $T_{c}$, and $t_{e}$/($\Delta$ $T_{c}$-$\Delta$ $T_{s}$) after convection occurred, was not depended on $T_{b}$ and initial temperature if the depth of water and thickness of magneticfluid were regular and it was possible to verify conjecture of tp from $\Delta$ $T_{s}$ and $\Delta$ $T_{c}$.lar and it was possible to verify conjecture of tp from $\Delta$ $T_{s}$ and $\Delta$ $T_{c}$.c}$.>.

Occluded Object Motion Estimation System based on Particle Filter with 3D Reconstruction

  • Ko, Kwang-Eun;Park, Jun-Heong;Park, Seung-Min;Kim, Jun-Yeup;Sim, Kwee-Bo
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.12 no.1
    • /
    • pp.60-65
    • /
    • 2012
  • This paper presents a method for occluded object based motion estimation and tracking system in dynamic image sequences using particle filter with 3D reconstruction. A unique characteristic of this study is its ability to cope with partial occlusion based continuous motion estimation using particle filter inspired from the mirror neuron system in human brain. To update a prior knowledge about the shape or motion of objects, firstly, fundamental 3D reconstruction based occlusion tracing method is applied and object landmarks are determined. And optical flow based motion vector is estimated from the movement of the landmarks. When arbitrary partial occlusions are occurred, the continuous motion of the hidden parts of object can be estimated by particle filter with optical flow. The resistance of the resulting estimation to partial occlusions enables the more accurate detection and handling of more severe occlusions.

VOID FRACTION PREDICTION FOR SEPARATED FLOWS IN THE NEARLY HORIZONTAL TUBES

  • AHN, TAE-HWAN;YUN, BYONG-JO;JEONG, JAE-JUN
    • Nuclear Engineering and Technology
    • /
    • v.47 no.6
    • /
    • pp.669-677
    • /
    • 2015
  • A mechanistic model for void fraction prediction with improved interfacial friction factor in nearly horizontal tubes has been proposed in connection with the development of a condensation model package for the passive auxiliary feedwater system of the Korean Advanced Power Reactor Plus. The model is based on two-phase momentum balance equations to cover various types of fluids, flow conditions, and inclination angles of the flow channel in a separated flow. The void fraction is calculated without any discontinuity at flow regime transitions by considering continuous changes of the interfacial geometric characteristics and interfacial friction factors across three typical separated flows, namely stratified-smooth, stratified-wavy, and annular flows. An evaluation of the proposed model against available experimental data covering various types of fluids and flow regimes showed a satisfactory agreement.

Property Control in a Continuous MMA Polymerization Reactor using EKF based Nonlinear Model Predictive Controller

  • Ahn, Sung-Mo;Park, Myung-June;Rhee, Hyun-Ku
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1998.10a
    • /
    • pp.468-473
    • /
    • 1998
  • A mathematical model was developed for a continuous re-actor in which free radical polymerization of methyl methacrylate (MMA) occurred. Elementary reactions considered in this study were initiation, propagation, termination, and chain transfers to monomer and solvent. The reactor model took into account the density change of the reactor contents and the gel effect. A control system was designed for a continuous reactor using extended Kalman filter (EKF) based non-linear model predictive controller (NLMPC) to control the conversion and the weight average molecular weight of the polymer product. Control input variables were the jacket inlet temperature and the feed flow rate. For the purpose of validation of the control strategy, on-line digital control experiments were conducted with densitometer and viscometer for the measurement of the polymer properties. Despite the com-plex and nonlinear features of the polymerization reaction system, the EKF based NLMPC performed quite satisfactorily for the property control of the continuous polymerization reactor.

  • PDF

Crankshaft Bearing Design Adapting Continuous Oil Supply System (연속오일공급 형태의 크랭크샤프트 베어링 설계)

  • Yun Jeong-Eui
    • Tribology and Lubricants
    • /
    • v.20 no.2
    • /
    • pp.84-90
    • /
    • 2004
  • It is very important to improve the durability and reliability of crankshaft because of conflicting demands for lower fuel consumption and higher power output. In this study, for the crankshaft bearing design, analyses were conducted to determine the lubrication characteristics such as oil flow rate, minimum oil film thickness, friction force and increase of oil temperature at main bearing and connecting rod bearing. Additionally, supplied oil pressure and temperature effects on the bearings were simulated to figure out lubrication characteristics on the bearings. Finally the effects of increasing the bearing width and clearance were introduced on the lubrication characteristics.

Multivariable Nonlinear Model Predictive Control of a Continuous Styrene Polymerization Reactor

  • Na, Sang-Seop;Rhee, Hyun-Ku
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1999.10a
    • /
    • pp.45-48
    • /
    • 1999
  • Model predictive control algorithm requires a relevant model of the system to be controlled. Unfortunately, the first principle model describing a polymerization reaction system has a large number of parameters to be estimated. Thus there is a need for the identification and control of a polymerization reactor system by using available input-output data. In this work, the polynomial auto-regressive moving average (ARMA) models are employed as the input-output model and combined into the nonlinear model predictive control algorithm based on the successive linearization method. Simulations are conducted to identify the continuous styrene polymerization reactor system. The input variables are the jacket inlet temperature and the feed flow rate whereas the output variables are the monomer conversion and the weight-average molecular weight. The polynomial ARMA models obtained by the system identification are used to control the monomer conversion and the weight-average molecular weight in a continuous styrene polymerization reactor It is demonstrated that the nonlinear model predictive controller based on the polynomial ARMA model tracks the step changes in the setpoint satisfactorily. In conclusion, the polynomial ARMA model is proven effective in controlling the continuous styrene polymerization reactor.

  • PDF

Thermodynamic Analysis of Solid Electrolyte $CO_2$ Sensor in Continuous and Discontinuous Flow Systems (연속 기체흐름계 및 일시 기체흐름계에서의 고체 전해질 $CO_2$ 가스센서의 열역학적 분석)

  • Choi, Soon-Don
    • Journal of Sensor Science and Technology
    • /
    • v.7 no.5
    • /
    • pp.319-326
    • /
    • 1998
  • Anodic half-reaction in the $Na^+$ ionic sensors using $Na_2CO_3$ and $MCO_3$ ($M=Cs_2,K_2,Li_2,Ca$) as a sensitive membrane is derived in continuous flow system to explain $CO_2$ sensing characteristics. For various gas-sensitive membranes, a well known overall reaction, $MCO_3\;=\;MO\;+\;CO_2$, cannot be applied for the EMF behaviors of these kinds of sensors. So, the anodic reaction is found to involve $Na_2CO_3$ and $M^{++}$-containing oxide phases by employing the ion exchange reaction at the interface of solid electrolyte and the sensitive membrane to maintain ionic balance in the whole cell. Based on the electrode reaction derived in flow system, differences of cell potentials between continuous and discontinuous flow systems were also discussed. These EMF differences were considerably caused by the partial pressures of oxygen and $CO_2$ as well as irreversible chemical reactions between electrode materials and $CO_2$ atmosphere.

  • PDF

A Continuous Electrical Cell Lysis Chip using a DC Bias Voltage for Cell Disruption and Electroosmotic Flow (한 쌍의 전극으로 전기 삼투 유동과 세포 분쇄 기능을 동시에 구현한 연속적인 세포 분쇄기)

  • Lee, Dong-Woo;Cho, Young-Ho
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.32 no.10
    • /
    • pp.831-835
    • /
    • 2008
  • We present a continuous electrical cell lysis chip, using a DC bias voltage to generate the focused high electric field for cell lysis as well as the electroosmotic flow for cell transport. The previous cell lysis chips apply an AC voltage between micro-gap electrodes for cell lysis and use pumps or valves for cell transport. The present DC chip generates high electrical field by reducing the width of the channel between a DC electrode pair, while the previous AC chips reducing the gap between an AC electrode pair. The present chip performs continuous cell pumping without using additional flow source, while the previous chips need additional pumps or valves for the discontinuous cell loading and unloading in the lysis chambers. The experimental study features an orifice whose width and length is 20 times narrower and 175 times shorter than the width and length of a microchannel. With an operational voltage of 50 V, the present chip generates high electric field strength of 1.2 kV/cm at the orifice to disrupt cells with 100% lysis rate of Red Blood Cells and low electric field strength of 60 V/cm at the microchannel to generate an electroosmotic flow of $30{\mu}m/s{\pm}9{\mu}m/s$. In conclusion, the present chip is capable of continuous self-pumping cell lysis at a low voltage; thus, it is suitable for a sample pretreatment component of a micro total analysis system or lab-on-a-chip.