• 제목/요약/키워드: Continuous flow process

검색결과 328건 처리시간 0.02초

은 함유 폐수의 연속 순환 전해처리 시 유량변화가 회수 공정에 미치는 영향 (Effect of Flow Rate on the Continuous Cycling Electrolytic Treatment Process for Silver Ion Containing Wastewater)

  • 정원주;김동수
    • 한국물환경학회지
    • /
    • 제23권5호
    • /
    • pp.577-580
    • /
    • 2007
  • The influence of flow rate has been investigated on the treatment efficiency of continuous cycling electrolytic process employing artificial and actual photographic wastewater which containing silver ion. For artificial wastewater, the treatment efficiency of process was found to rise ca. three times when the flow rate of wastewater was increased from 3 mL/min to 15 mL/min. The process efficiency was doubled under the same condition regarding actual wastewater. The effect of flow rate on the treatment efficiency was observed to be altered according to the metal ionic form and solution composition. The coefficient of mass transfer was estimated using model equation, which verified that the raised treatment efficiency at higher flow rate was due to the increased mobility of ionic species.

연속주조공정에서의 유동과 응고에 대한 유한요소 모델링 (A Finite Element Modeling on the Fluid Flow and Solidification in a Continuous Casting Process)

  • 김태헌;김덕수;최형철;김우승;이세균
    • 대한기계학회논문집B
    • /
    • 제23권7호
    • /
    • pp.820-830
    • /
    • 1999
  • The coupled turbulent flow and solidification is considered in a typical slab continuous easting process using commercial program FIDAP. Standard $k-{\varepsilon}$ turbulence model is modified to decay turbulent viscosity in the mushy zone and laminar viscosity is set to a sufficiently large value at the solid region. This coupled turbulent flow and solidification model also contains thermal contact resistance due to the mold powder and air gap between the strand and mold using an effective thermal conductivity. From the computed flow pattern, the trajectory of inclusion particles was calculated. The comparison between the predicted and experimental solidified shell thickness shows a good agreement.

쌍롤식 연속주조공정에서의 난류유동 및 거시적응고 해석 (Analysis of the Coupled Turbulent Flow and Macroscopic Solidification in Twin-Roll Continuous Casting Process)

  • 김덕수;김우승;조기현
    • 대한기계학회논문집B
    • /
    • 제25권3호
    • /
    • pp.285-295
    • /
    • 2001
  • The transport phenomena in a wedge-shaped pool of twin-roll continuous caster are affected by the various operating parameters such as the melt-feed pattern, roll-gap thickness, melt-superheat, and casting speed. A computer program has been developed for analyzing the two-dimensional, steady conservation equations for transport phenomena during twin-roll continuous casting process in order to estimate the turbulent melt-flow, temperature fields, and solidification in the wedge-shaped pool. The turbulent characteristics of the melt-flow were considered using a low-Reynolds-number K-$\xi$ turbulence model. Based on the computer program, the effects of the different melt-feed patterns, roll-gap thicknesses, and superheats of melt on the variations of the velocity and temperature distributions, and the mushy solidification were examined. The results show that the liquidus line is located considerably at the upstream region, and in the lower region appear the well-mixed melt-flow and most widely developed mushy zone. Besides, the variation of melt-flow due to varying melt-feed patterns, affects mainly the liquidus line, and scarcely has effects on the solidus line in the outlet region.

The Investigation of COD Treatment and Energy Consumption of Urban Wastewater by a Continuous Electrocoagulation System

  • DEDE SAGSOZ, Yesim;YILMAZ, Alper Erdem;EKMEKYAPAR TORUN, Fatma;KOCADAGISTAN, Beyhan;KUL, Sinan
    • Journal of Electrochemical Science and Technology
    • /
    • 제13권2호
    • /
    • pp.261-268
    • /
    • 2022
  • In this study, electrochemical treatment of urban wastewater with electrical conductivity of 1000 μS cm-1 and chemical oxygen demand of 250 mg L-1 was investigated using the variables of initial pH value, current density and flow rate. Electrocoagulation was used, in which aluminum and stainless steel were selected, as the electrochemical treatment process. The electrocoagulation process was operated in continuous mode. The data obtained in experimental studies show that the best COD removal efficiency occurred in experiments where the initial pH value was 6. The increase in current density from 5 A to 15 A decreased the removal efficiency from 79 to 67%. The increase in flow rate under constant current density also reduced the efficiency of removal as expected. In experiments in which current density and flow rate were examined together, the increase in flow rate allowed the application of higher current densities. This situation led to considerable reductions in energy consumption values, even if the COD removal efficiency did not significantly increase. The high COD removal obtained with the use of high flow rate and high current density indicates that the electrocoagulation process can be used for high flow rate municipal wastewater treatment.

EMBR을 이용한 연주공정에서의 난류유동 및 응고에 대한 연구 (A Study on the Turbulent Flow and Solidification in a Continuous Casting Process with Electromagnetic Brake)

  • 김덕수;김우승
    • 대한기계학회논문집B
    • /
    • 제23권3호
    • /
    • pp.374-387
    • /
    • 1999
  • Two-dimensional turbulent fluid flow and solidification were investigated in a continuous casting process of a steel slab with electromagnetic field. The electromagnetic field was described by the Maxwell equations. The enthalpy-porosity relation was employed to suppress the velocity within a mushy region. A revised low-Reynolds number $k-{\varepsilon}$ turbulence model was used to consider the turbulent effects. It is shown that the temperature gradient in the casting direction in the case with EMBR becomes very weak compared to that of the case without EMBR. The results also show that the velocity profiles of the case with solidification are quite different from those of the case without solidification.

Continuous 와 pattern slot 코팅 공정에서의 유동특성과 다이 설계 (Dynamics and die design in continuous and patch slot coating processes)

  • 김수연;심서훈;신동명;이주성;정현욱;현재천
    • 한국유변학회:학술대회논문집
    • /
    • 한국유변학회 2006년도 춘계 학술발표회 논문집
    • /
    • pp.81-84
    • /
    • 2006
  • Slot coating process, in continuous and patch modes, has been applied for the many precise coating products, e.g., flat panel displays and second batteries. However, manufacturing uniform coating products is not a trivial task at high-speed operations because various flow instabilities or defects such as leaking, bubbles, ribbing, and rivulets are frequently observed in this process. It is no wonder, therefore, that many efforts to understand the various aspects of dynamics and coating windows of this process have been made both in academia and industry. In this study, as the first topic, flow dynamics within the coating bead in slot coating process has been investigated using the one-dimensional viscocapillary model by lubrication approximation and two-dimensional model by Flow-3D software. Especially, operability windows in both 1D and 2D cases with various slot die lip designs have been successfully portrayed. Also, effects of process conditions like viscosity and coating gap size on slot coating window have been analyzed. Also, some experiments to find minimum coating thickness and coating windows have been conducted using slot die coater implemented with flow visualization device, corroborating the numerical results. As the second topic, flow dynamics of both Newtonian and Non-Newtonian fluids in patch or pattern slot coating process, which is employed in manufacturing IT products such as secondary batteries, has been investigated for the purpose of optimal process designs. As a matter of fact, the flow control in this system is more difficult than in continuous case because od its transient or time-dependent nature. The internal die and die lip designs for patterned uniform coating products have been obtained by controlling flow behaviors of coating liquids issuing from slot. Numerical simulations have been performed using Fluent and Flow-3D packages. Flow behavior and pressure distribution inside the slot die has been compared with various die internal shapes and geometries. In the coating bead region, efforts to reduce irregular coating defects in head and tail parts of one patterned coating unit have been tried by changing die lip shapes. It has been concluded that optimal die internal design gas been developed, guaranteeing uniform velocity distribution of both Newtonian and shear thinning fluids at the die exit. And also optimal die lip design has been established, providing the longer uniform coating layer thickness within one coating unit.

  • PDF

유체동역학적 유전영동법을 이용한 극소형 연속 세포분리기 (A Continuous Cell Separation Chip Using Hydrodynamic Dielectrophoresis Process)

  • 도일;조영호
    • 대한기계학회논문집A
    • /
    • 제29권1호
    • /
    • pp.53-58
    • /
    • 2005
  • We present a high-throughput continuous cell separation chip using hydrodynamic dielectrophoresis (DEP) process. The continuous cell separation chip uses three planar electrodes in a separation channel, where the positive DEP cells are moved away from the central streamline while the negative DEP cells remain in the central streamline. In the experimental study, we use the mixture of viable (live) and nonviable (dead) yeast cells in order to obtain the continuous cell separation conditions. For the conditions of the electric fields frequency of 5MHz and the medium conductivity of $5{\mu}S/cm$, the fabricated chip performs a continuous separation of the yeast cell mixture at the varying flow-rate in the range of $0.1{\sim}{\mu{\ell}/min$.; thereby, resulting in the purity ranges of $95.9{\sim}97.3\%\;and\;64.5{\sim}74.3\%$ respectively for the viable and nonviable yeast cells. present chip demonstrates the constant cell separation performance for varying mixture flow-rates.

전자기 브레이크를 적용한 연속주조공정에서의 난류유동 및 응고의 3차원 해석 (Three-Dimensional Analysis of the Coupled Turbulent Flow and Solidification During a Continuous Casting Process with Electromagnetic Brake)

  • 김덕수;김우승
    • 대한기계학회논문집B
    • /
    • 제23권10호
    • /
    • pp.1254-1264
    • /
    • 1999
  • A three-dimensional coupled turbulent fluid flow and solidification process were analyzed in a continuous casting process of a steel slab with Electromagnetic Brake(EMBR). A revised low-Reynolds number $k-{\varepsilon}$ turbulence model was used to consider the turbulent effects. The enthalpy-porosity relation was employed to suppress the velocity within a mushy region. The electromagnetic field was described by Maxwell equations. Tile application of EMBR to the mold region results in the decrease of the transfer of superheat to the narrow face, the increase of temperature in free surface region and most liquid of submold region, and the higher temperature gradient near the solidifying shell. The increasing magnetic flux density effects mainly to the surface temperature of the solidifying shell of narrow face, hardly to the one of wide face. It is seen that in the presence of EMBR a thicker solidifying shell is obtained at the narrow face of the slab.

UBET에 의한 측방압출에서의 재료유동특성에 관한 연구 (A Study on Characteristics of the Material Flow Side-Extrusion by UBET)

  • 김강수;김영호
    • 한국정밀공학회지
    • /
    • 제16권11호
    • /
    • pp.116-121
    • /
    • 1999
  • Since the material flow near the die part in CONFORM (Continuous Extrusion Forming) process is similar to that of side-extrusion, the side-extrusion model of tube shaped aluminum profiles was studied for the die design in CONFORM process. In this paper, the effects of process parameters in the side -extrusion through a two-hole die face, such as material flow, height and thickness of the tube, velocities of punch and lengths of bearing land were investigated using UBET program and DEFORM commercial FEM code. The optimum lengths of the bearing lands and punch velocities for obtaining the straight shape products required were determined.

  • PDF

강제 맥동류를 이용한 연소특성 연구 (A Study on Combustion Characteristics using Forced Pulsating Flow)

  • 양영준
    • 한국기계가공학회지
    • /
    • 제11권5호
    • /
    • pp.109-114
    • /
    • 2012
  • The combustion characteristics using forced pulsating flow were experimentally investigated with confined premixed flames stabilized by a reward-facing step. The intermittent combustion has many merits, for instance, such as high load combustion, high heat transfer, low emission gas, compared with those of continuous combustion. For these purposes, data processing of binary image was conducted to reveal the differences between intermittent and continuous combustion. As the results, it was possible to calculate the reaction zone using OH-emission band and, therefore, showed that forced pulsating flow was useful in combustion technology.