• Title/Summary/Keyword: Continuous Rainfall

Search Result 216, Processing Time 0.037 seconds

Climate-instigated disparities in supply and demand constituents of agricultural reservoirs for paddy-growing regions

  • Ahmad, Mirza Junaid;Cho, Gun-ho;Choi, Kyung-sook
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2022.05a
    • /
    • pp.516-516
    • /
    • 2022
  • Agricultural reservoirs are critical water resources structures to ensure continuous water supplies for rice cultivation in Korea. Climate change has increased the risk of reservoir failure by exacerbating discrepancies in upstream runoff generation, downstream irrigation water demands, and evaporation losses. In this study, the variations in water balance components of 400 major reservoirs during 1973-2017 were examined to identify the reservoirs with reliable storage capacities and resilience. A conceptual lumped hydrological model was used to transform the incident rainfall into the inflows entering the reservoirs and the paddy water balance model was used to estimate the irrigation water demand. Historical climate data analysis showed a sharp warming gradient during the last 45 years that was particularly evident in the central and southern regions of the country, which were also the main agricultural areas with high reservoir density. We noted a country-wide progressive increase in average annual cumulative rainfall, but the forcing mechanism of the rainfall increment and its spatial-temporal trends were not fully understood. Climate warming resulted in a significant increase in irrigation water demand, while heavy rains increased runoff generation in the reservoir watersheds. Most reservoirs had reliable storage capacities to meet the demands of a 10-year return frequency drought but the resilience of reservoirs gradually declined over time. This suggests that the recovery time of reservoirs from the failure state had increased which also signifies that the duration of the dry season has been prolonged while the wet season has become shorter and/or more intense. The watershed-irrigated area ratio (W-Iratio) was critical and the results showed that a slight disruption in reservoir water balance under the influence of future climate change would seriously compromise the performance of reservoirs with W-Iratio< 5.

  • PDF

Analysis of Rainfall-Runoff Characteristic at Mountainous Watershed Using GeoWEPP and SWAT Model (GeoWEPP과 SWAT 모델을 이용한 산지 유역 강우-유출량 특성 분석)

  • Kim, Jisu;Kim, Minseok;Kim, Jin Kwan;Oh, Hyun-Joo;Woo, Choongshik
    • Journal of The Geomorphological Association of Korea
    • /
    • v.28 no.2
    • /
    • pp.31-44
    • /
    • 2021
  • Due to recent climate change, continuous soil loss is occurring in the mountainous watershed. The development of geographic information systems allows the spatial simulation of soil loss through hydrological models, but more researches applied to the mountain watershed areas in Korea are needed. In this study, prior to simulating the soil loss characteristics of the mountainous watershed, the field monitoring and the SWAT and GeoWEPP models were used to simulate and analyze the rainfall and runoff characteristics in the mountainous watershed area of Jirisan National Park. As a result of monitoring, runoff showed a characteristic of a rapid response as rainfall increased and decreased. In the simulation runoff results of calibrated SWAT models, R2, RMSE and NSE was 0.95, 0.03, and 0.95, respectively. The runoff simulation results of the GeoWEPP model were evaluated as 0.89, 0.30, and 0.83 for R2, RMSE, and NSE, respectively. These results, therefore, imply that the runoff simulated through SWAT and GeoWEPP models can be used to simulate soil loss. However, the results of the two models differ from the parameters and base flow of actual main channel, and further consideration is required to increase the model's accuracy.

A Case Study on the Analysis of Cause and Characteristics of a Landslide at the Sedimentary Rock Area (퇴적암 지역에서의 산사태 원인 및 특성 분석에 대한 사례연구)

  • Song, Young-Suk;Hong, Won-Pyo
    • The Journal of Engineering Geology
    • /
    • v.17 no.1 s.50
    • /
    • pp.101-113
    • /
    • 2007
  • A landslide was occurred due to soil cutting for construction to expand the Donghae express highway in Dong-hae-City, Korea. The total area of the landslide was about $9,550m^2$ with 100 m of width and 87m of height. The landslide was occurred due to the internal factor of the unstable geological structure including the clay layer and the external factor of continuous heavy rainfalls. As the result of field instrumentation during the landslide, the horizontal displacement of the slope ground increases with increasing the accumulated rainfall by continuous rainfall during the rainy season. Also, the depth of sliding failure was decided by the horizontal displacement distribution during landslide occurrence. It makes sure that the horizontal displacement starts from the depth of sliding failure and the depth of sliding failure matches well with the location of the clay layer. As the slope stability analysis using Bishop's Simplified Method at the landslide area, the safety factor of slope during the rainy season was 0.53. This safety factor of slope was enough to trigger the landslide at this area. The depth of sliding failure obtained by analytical method matches well with the depth of the clay layer.

A Study of Soil Moisture Retention Relation using Weather Radar Image Data

  • Choi, Jeongho;Han, Myoungsun;Lim, Sanghun;Kim, Donggu;Jang, Bong-joo
    • Journal of Multimedia Information System
    • /
    • v.5 no.4
    • /
    • pp.235-244
    • /
    • 2018
  • Potential maximum soil moisture retention (S) is a dominant parameter in the Soil Conservation Service (SCS; now called the USDA Natural Resources Conservation Service (NRCS)) runoff Curve Number (CN) method commonly used in hydrologic modeling for event-based flood forecasting (SCS, 1985). Physically, S represents the depth [L] soil could store water through infiltration. The depth of soil moisture retention will vary depending on infiltration from previous rainfall events; an adjustment is usually made using a factor for Antecedent Moisture Conditions (AMCs). Application of the method for continuous simulation of multiple storms has typically involved updating the AMC and S. However, these studies have focused on a time step where S is allowed to vary at daily or longer time scales. While useful for hydrologic events that span multiple days, this temporal resolution is too coarse for short-term applications such as flash flood events. In this study, an approach for deriving a time-variable potential maximum soil moisture retention curve (S-curve) at hourly time-scales is presented. The methodology is applied to the Napa River basin, California. Rainfall events from 2011 to 2012 are used for estimating the event-based S. As a result, we derive an S-curve which is classified into three sections depending on the recovery rate of S for soil moisture conditions ranging from 1) dry, 2) transitional from dry to wet, and 3) wet. The first section is described as gradually increasing recovering S (0.97 mm/hr or 23.28 mm/day), the second section is described as steeply recovering S (2.11 mm/hr or 50.64 mm/day) and the third section is described as gradually decreasing recovery (0.34 mm/hr or 8.16 mm/day). Using the S-curve, we can estimate the hourly change of soil moisture content according to the time duration after rainfall cessation, which is then used to estimate direct runoff for a continuous simulation for flood forecasting.

An Experimental Study of Runoff Reduction Using Infiltration Facility (건축물에 적용된 우수침투시설의 유출저감효과에 관한 실험적 연구)

  • Park Jae-Roh;Kwon Hyok
    • Journal of Soil and Groundwater Environment
    • /
    • v.10 no.5
    • /
    • pp.37-44
    • /
    • 2005
  • The main object of this study is to develop the infiltration facility that it can be used in grounds, parking areas, roads, pathway, housing etc. As a result, it is much alike in the infiltration method of facility to use permeable concrete, permeable hole and be filled with broken stones. And through this experiment, it was perceived the truth that the state of ground, the groundwater level, buildings around them, the history of submerging and the applicable infiltration facilities are the key. To verify how much the infiltration facility reduce the outflow, we set up the infiltration facility in the test area. In result, it reduced the outflow 89% in 24 mm rainfall, 93% in 12 mm, 51% in 140 mm, 75% in 64 mm and 80% in 54 mm. As the rainfall rate increased, the infiltration increased up to the limited rainfall. And in the limited rainfall, we knew that the infiltration was reduced suddenly. Infiltration is closely related to the state of ground, the rain interval etc. and we will analyze these conditions through the continuous monitoring.

Soil Erosion From Slope Land at Early Stage of Grasses for Development of Mountainous Area (산지개발을 위한 경사도별 초지조성초기의 토양유실량측정시험)

  • Hwang, Eun
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.31 no.1
    • /
    • pp.71-81
    • /
    • 1989
  • Soil erosion was investigated to find out difference in amount of soil eroded from slope land at early stage of young grasses and at later stage with sufficient cover with different slopes. The six experimental plots were formed on 8$^{\circ}$, 10$^{\circ}$, 15$^{\circ}$, 20$^{\circ}$, and 25$^{\circ}$, with 2m width and 20m length located at the Hwak Kok Ri, Chun Sung Gun, Kang Weon Do. The amount of soil eroded and run-off were collected from 1. May 1987. to 30. October 1988, growing with grasses sowed 2. September 1987. The results were as follows : 1. The amount of soil eroded from the plots except 8$^{\circ}$ plot exceeded the allowable soil erosion with 14 ton/ha during the land formuing before establishment of sufficient surface cover with grasses. Therefore, proper soil conservation practice should be recommeneed. 2. The amount of soil eroded increased exponentially with increased slope as 1.24 times for 15$^{\circ}$1.65 times for 20*, and 2.94 times for 25$^{\circ}$, m comparing with standared 10$^{\circ}$ polt. 3. The erosion occurred mainly by high density of rainfall exceeding lOOmm as consecutive precipitation during the raining peried or accompanied by typhoon passing. 4. The significant soil erosion, when the land covering ratio was over 95% after seeding of grass, was recorded only by the single continuous storms over lOOmm of concentrated precpitation, of which amounts were 1/73~/250 of the allowable soil erosion. 5. The amount of soil erosion from the plots with sufficient surface cover with grasses increased as the slope increased however the amounts were small enough to be neglected. 6. Desolation by soil erosion would be minor problem up to the slope of 20$^{\circ}$ when the mountainous area developed to the grassland with sufficient cover. But it could be concerned on the turn to the hare land by the treading of livestocks with the land slope over 25$^{\circ}$. 7. The run-off of rainfall increased by the increament of slope but it was not exponentially increased. 8. The run-off of rainfall after seeding of grass reduced by 20% in comparison with the run-off of rainfall before seeding, which might be due to infiltration of rainfall promoted by the grass roots.

  • PDF

Regionalization of rainfall-runoff model parameters based on the correlation of regional characteristic factors (지역특성인자의 상호연관성을 고려한 강우-유출모형 매개변수 지역화)

  • Kim, Jin-Guk;Sumyia, Uranchimeg;Kim, Tae-Jeong;Kwon, Hyun-Han
    • Journal of Korea Water Resources Association
    • /
    • v.54 no.11
    • /
    • pp.955-968
    • /
    • 2021
  • A water resource plan is routinely based on a natural flow and can be estimated using observed streamflow data or a long-term continuous rainfall-runoff model. However, the watershed with the natural flow is very limited to the upstream area of the dam. In particular, for the ungauged watershed, a rainfall-runoff model is established for the gauged watershed, and the model is then applied to the ungauged watershed by transferring the associated parameters. In this study, the GR4J rainfall-runoff model is mainly used to regionalize the parameters that are estimated from the 14 dam watershed via an optimization process. In terms of optimizing the parameters, the Bayesian approach was applied to consider the uncertainty of parameters quantitatively, and a number of parameter samples obtained from the posterior distribution were used for the regionalization. Here, the relationship between the estimated parameters and the topographical factors was first identified, and the dependencies between them are effectively modeled by a Copula function approach to obtain the regionalized parameters. The predicted streamflow with the use of regionalized parameters showed a good agreement with that of the observed with a correlation of about 0.8. It was found that the proposed regionalized framework is able to effectively simulate streamflow for the ungauged watersheds by the use of the regionalized parameters, along with the associated uncertainty, informed by the basin characteristics.

Error analysis of areal mean precipitation estimation using ground gauge precipitation and interpolation method (지점 강수량과 내삽기법을 이용한 면적평균 강수량 산정의 오차 분석)

  • Hwang, Seokhwan;Kang, Narae;Yoon, Jung Soo
    • Journal of Korea Water Resources Association
    • /
    • v.55 no.12
    • /
    • pp.1053-1064
    • /
    • 2022
  • The Thiessen method, which is the current area average precipitation method, has serious structural limitations in accurately calculating the average precipitation in the watershed. In addition to the observation accuracy of the precipitation meter, errors may occur in the area average precipitation calculation depending on the arrangement of the precipitation meter and the direction of the heavy rain. When the watershed is small and the station density is sparse, in both simulation and observation history, the Thiessen method showed a peculiar tendency that the average precipitation in the watershed continues to increase and decrease rapidly for 10 minutes before and after the peak. And the average precipitation in the Thiessen basin was different from the rainfall radar at the peak time. In the case where the watershed is small but the station density is relatively high, overall, the Thiessen method did not show a trend of sawtooth-shaped over-peak, and the time-dependent fluctuations were similar. However, there was a continuous time lag of about 10 minutes between the rainfall radar observations and the ground precipitation meter observations and the average precipitation in the basin. As a result of examining the ground correction effect of the rainfall radar watershed average precipitation, the correlation between the area average precipitation after correction is rather low compared to the area average precipitation before correction, indicating that the correction effect of the current rainfall radar ground correction algorithm is not high.

Relationships on Magnitude and Frequency of Freshwater Discharge and Rainfall in the Altered Yeongsan Estuary (영산강 하구의 방류와 강우의 규모 및 빈도 상관성 분석)

  • Rhew, Ho-Sang;Lee, Guan-Hong
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.16 no.4
    • /
    • pp.223-237
    • /
    • 2011
  • The intermittent freshwater discharge has an critical influence upon the biophysical environments and the ecosystems of the Yeongsan Estuary where the estuary dam altered the continuous mixing of saltwater and freshwater. Though freshwater discharge is controlled by human, the extreme events are mainly driven by the heavy rainfall in the river basin, and provide various impacts, depending on its magnitude and frequency. This research aims to evaluate the magnitude and frequency of extreme freshwater discharges, and to establish the magnitude-frequency relationships between basin-wide rainfall and freshwater inflow. Daily discharge and daily basin-averaged rainfall from Jan 1, 1997 to Aug 31, 2010 were used to determine the relations between discharge and rainfall. Consecutive daily discharges were grouped into independent events using well-defined event-separation algorithm. Partial duration series were extracted to obtain the proper probability distribution function for extreme discharges and corresponding rainfall events. Extreme discharge events over the threshold 133,656,000 $m^3$ count up to 46 for 13.7y years, following the Weibull distribution with k=1.4. The 3-day accumulated rain-falls which occurred one day before peak discharges (1day-before-3day -sum rainfall), are determined as a control variable for discharge, because their magnitude is best correlated with that of the extreme discharge events. The minimum value of the corresponding 1day-before-3day-sum rainfall, 50.98mm is initially set to a threshold for the selection of discharge-inducing rainfall cases. The number of 1day-before-3day-sum rainfall groups after selection, however, exceeds that of the extreme discharge events. The canonical discriminant analysis indicates that water level over target level (-1.35 m EL.) can be useful to divide the 1day-before-3day-sum rainfall groups into discharge-induced and non-discharge ones. It also shows that the newly-set threshold, 104mm, can just separate these two cases without errors. The magnitude-frequency relationships between rainfall and discharge are established with the newly-selected lday-before-3day-sum rainfalls: $D=1.111{\times}10^8+1.677{\times}10^6{\overline{r_{3day}}$, (${\overline{r_{3day}}{\geqq}104$, $R^2=0.459$), $T_d=1.326T^{0.683}_{r3}$, $T_d=0.117{\exp}[0.0155{\overline{r_{3day}}]$, where D is the quantity of discharge, ${\overline{r_{3day}}$ the 1day-before-3day-sum rainfall, $T_{r3}$ and $T_d$, are respectively return periods of 1day-before-3day-sum rainfall and freshwater discharge. These relations provide the framework to evaluate the effect of freshwater discharge on estuarine flow structure, water quality, responses of ecosystems from the perspective of magnitude and frequency.

Runoff Analysis on the Physically-Based Conceptual Time-Continuous Runoff Model (물리적.개념적 연속 유출모형에 의한 유출해석)

  • 배덕효;조원철
    • Water for future
    • /
    • v.28 no.6
    • /
    • pp.193-202
    • /
    • 1995
  • The subjective research attempts to apply a rainfall-runoff model capable of considering time-variation of soil water contents which are highly correlated to the river flows on the qpqyungchang river basin and to evaluate its performance for flow forecasting. The model used in this study is a physically-based conceptual time-continuous model, which is composed of the Sacramento soil moisture accounting model and the nonlinear multiple conceptual reservoirs model. The daily precipitation and evaporation data for 7 years and for 3 years were used for the parameter estimation and the model verification, respectively. As a result, the flows including a significant flood event were well simulated, and the cross-correlation coefficient between observed flows and computed flows for the verification periods was 0.87, but in general computed flows were underestimated for the low-flow periods. Also, the effects of precipitation and soil water content to the river flows were analysed for the flood and the drought.

  • PDF