In this paper, a Diffusion Multi-step Classifier (DMC) is proposed to address the imbalance issue in credit prediction. DMC utilizes a Diffusion Model to generate continuous numerical data from credit prediction data and creates categorical data through a Multi-step Classifier. Compared to other algorithms generating synthetic data, DMC produces data with a distribution more similar to real data. Using DMC, data that closely resemble actual data can be generated, outperforming other algorithms for data generation. When experiments were conducted using the generated data, the probability of predicting delinquencies increased by over 20%, and overall predictive accuracy improved by approximately 4%. These research findings are anticipated to significantly contribute to reducing delinquency rates and increasing profits when applied in actual financial institutions.
Communications for Statistical Applications and Methods
/
v.31
no.4
/
pp.441-457
/
2024
Semicontinuous data are characterized by a mixture of a point probability mass at zero and a continuous distribution of positive values. This type of data is often modeled using a two-part model where the first part models the probability of dichotomous outcomes -zero or positive- and the second part models the distribution of positive values. Despite the two-part model's popularity, variable selection in this model has not been fully addressed, especially, in high dimensional data. The objective of this study is to investigate variable selection and prediction performance of penalized regression methods in two-part models. The performance of the selected techniques in the two-part model is evaluated via simulation studies. Our findings show that LASSO and ENET tend to select more predictors in the model than SCAD and MCP. Consequently, MCP and SCAD outperform LASSO and ENET for β-specificity, and LASSO and ENET perform better than MCP and SCAD with respect to the mean squared error. We find similar results when applying the penalized regression methods to the prediction of crime incidents using community-based data.
The prediction of structural mechanical behaviors is vital important to early perceive the abnormal conditions and avoid the occurrence of disasters. Especially for underground engineering, complex geological conditions make the structure more prone to disasters. Aiming at solving the problems existing in previous studies, such as incomplete consideration factors and can only predict the continuous performance, the deep attention fused temporal convolution network (DATCN) is proposed in this paper to predict the spatial mechanical behaviors of structure, which integrates both the temporal effect and spatial effect and realize the cross-time prediction. The temporal convolution network (TCN) and self-attention mechanism are employed to learn the temporal correlation of each monitoring point and the spatial correlation among different points, respectively. Then, the predicted result obtained from DATCN is compared with that obtained from some classical baselines, including SVR, LR, MLP, and RNNs. Also, the parameters involved in DATCN are discussed to optimize the prediction ability. The prediction result demonstrates that the proposed DATCN model outperforms the state-of-the-art baselines. The prediction accuracy of DATCN model after 24 hours reaches 90 percent. Also, the performance in last 14 hours plays a domain role to predict the short-term behaviors of the structure. As a study case, the proposed model is applied in an underwater shield tunnel to predict the stress variation of concrete segments in space.
The random variable with an arbitrary value or more is called semi-continuous variable or zero-inflated one in case that its boundary value is more frequently observed than expected. This means the boundary value is likely to be practically observed more than it should be theoretically under certain probability distribution. When the distribution considered is continuous, the variable is defined as semi-continuous and when one of discrete distribution is assumed for the variable, we regard it as zero-inflated. In this study, we introduce the two-part model, which consists of one part for modelling the binary response and the other part for modelling the variable greater than the boundary value. Especially, the zero-inflated regression models are explained by using Poisson distribution and negative binomial distribution. In real data analysis, we employ the zero-inflated regression models to estimate the number of days under extreme heat-wave circumstances during the last 10 years in South Korea. Based on the estimation results, we create prediction maps for the estimated number of days under heat-wave advisory and heat-wave warning by using the universal kriging, which is one of the spatial prediction methods.
KSCE Journal of Civil and Environmental Engineering Research
/
v.37
no.6
/
pp.981-987
/
2017
Jeju Island is a volcanic island which has a large permeability. Groundwater is a major water resources and its proper management is essential. Especially, there is a multilevel restriction due to the groundwater level decline during a drought period to protect sea water intrusion. Preliminary countermeasure using long-term groundwater level prediction is necessary to use agricultural groundwater properly. For this purpose, the monthly groundwater level prediction technique by Artificial Neural Network model was developed and applied to the representative monitoring wells. The monthly prediction model showed excellent results for training and test periods. The continuous groundwater level prediction model also developed, which used the monthly forecasted values adaptively as input data. The characteristics of groundwater declines were analyzed under extreme cases without precipitation for several months.
KIPS Transactions on Software and Data Engineering
/
v.2
no.4
/
pp.281-290
/
2013
The IT asset is a core part that supports the management objective of an organization, and the fast settlement of the IT asset fault is very important. In this study, a fault recovery prediction technique is proposed, which uses the existing fault data to address the IT asset fault. The proposed fault recovery prediction technique is as follows. First, the existing fault recovery data were pre-processed and classified by fault recovery type; second, a rule was established for the keyword mapping of the classified fault recovery types and reported data; and third, a machine learning process that allows the prediction of the fault recovery method based on the established rule was presented. To verify the effectiveness of the proposed machine learning process, company A's 33,000 computer fault data for the duration of six months were tested. The hit rate for fault recovery prediction was approximately 72%, and it increased to 81% via continuous machine learning.
In the present study, an enhanced subsurface prediction algorithm based on a non-parametric geostatistical model and a history matching technique through Gibbs sampler is developed and the iterative prediction improvement procedure is proposed. The developed model is applied to a simple two-dimensional synthetic case where domain is composed of three different hydrogeologic media with $500m{\times}40m$ scale. In the application, it is assumed that there are 4 independent pumping tests performed at different vertical interval and the history curves are acquired through numerical modeling. With two hypothetical borehole information and pumping test data, the proposed prediction model is applied iteratively and continuous improvements of the predictions with reduced uncertainties of the media distribution are observed. From the results and the qualitative/quantitative analysis, it is concluded that the proposed model is good for the subsurface prediction improvements where the history data is available as a supportive information. Once the proposed model be a matured technique, it is believed that the model can be applied to many groundwater, geothermal, gas and oil problems with conventional fluid flow simulators. However, the overall development is still in its preliminary step and further considerations needs to be incorporated to be a viable and practical prediction technique including multi-dimensional verifications, global optimization, etc. which have not been resolved in the present study.
Proceedings of the Korean Society of Precision Engineering Conference
/
2004.10a
/
pp.25-28
/
2004
A fracture was generated by change of clearance and deterioration of material properties on the sheet metal through temperature. This paper describes the results of a prediction about the temperature of the sheet metal during continuous stamping process, because the temperature increase of the sheet metal has a detrimental effect on formability. To analyze the temperature increase of the sheet metal during continuous stamping process, tensile and friction tests were performed from room temperature to 300$^{\circ}C$ at warm condition in this study. As temperature increase, tensile strength, elongation, strain hardening exponent and anisotropy coefficient for each specimens were decreased. On the other hand, friction coefficients were increased. From the FE-simulation results, temperature upward tendency was identified on dies and sheet metal. These observations are rationalized on the basis of the material properties, friction coefficient vs. temperature relationship for the sheet.
The incidence of type 1 diabetes mellitus (T1DM) in children and adolescents is increasing worldwide. Combined effects of genetic and environmental factors cause T1DM, which make it difficult to predict whether an individual will inherit the disease. Due to the level of self-care necessary in T1DM maintenance, it is crucial for pediatric settings to support achieving optimal glucose control, especially when adolescents are beginning to take more responsibility for their own health. Innovative insulin delivery systems, such as continuous subcutaneous insulin infusion (CSII), and noninvasive glucose monitoring systems, such as continuous glucose monitoring (CGM), allow patients with T1DM to achieve a normal and flexible lifestyle. However, there are still challenges in achieving optimal glucose control despite advanced technology in T1DM administration. In this article, disease prediction and current management of T1DM are reviewed with special emphasis on biomarkers of pancreatic ${\beta}-cell$ stress, CSII, glucose monitoring, and several other adjunctive therapies.
Neonatal seizures are generally not only brief and subtle but also not easily recognized and are usually untreated. In sick neonates, seizures are frequently not manifested clinically but are detected only by electroencephalography (subclinical EEG seizures). This phenomenon of electroclinical dissociation is fairly common in neonates. On the other hand, neonates frequently show clinical behaviors such as stiffening, apnea, or autonomic manifestations that mimic seizures, which is usually associated with underlying encephalopathy and non-epileptic seizures. Therefore, it might be difficult to confirm the diagnosis of neonatal seizures. Early recognition of neonatal seizures is important to minimize poor neurodevelopmental outcomes, including cognitive, behavioral, and learning disabilities, as well as the development of postnatal epilepsy. EEG is a reliable tool in the determination of neonatal seizures. Continuous EEG monitoring is essential for the identification of seizures, evaluation of treatment efficacy, and prediction of the neurodevelopmental outcome. However, there is not yet a wide consensus on the optimal "standard" lead montage for the continuous EEG monitoring.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.