• Title/Summary/Keyword: Continuous Optimization Algorithm

Search Result 183, Processing Time 0.023 seconds

A Hybrid Genetic Algorithm for Generating Cutting Paths of a Laser Torch (레이저 토치의 절단경로 생성을 위한 혼합형 유전알고리즘)

  • 이문규;권기범
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.8 no.12
    • /
    • pp.1048-1055
    • /
    • 2002
  • The problem of generating torch paths for 2D laser cutting of a stock plate nested with a set of free-formed parts is investigated. The objective is to minimize the total length of the torch path starting from a blown depot, then visiting all the given Parts, and retuning back to the depot. A torch Path consists of the depot and Piercing Points each of which is to be specified for cutting a part. The torch path optimization problem is shown to be formulated as an extended version of the standard travelling salesman problem To solve the problem, a hybrid genetic algorithm is proposed. In order to improve the speed of evolution convergence, the algorithm employs a genetic algorithm for global search and a combination of an optimization technique and a genetic algorithm for local optimization. Traditional genetic operators developed for continuous optimization problems are used to effectively deal with the continuous nature of piercing point positions. Computational results are provided to illustrate the validity of the proposed algorithm.

Genetic Algorithm Based Continuous-Discrete Optimization and Multi-objective Sequential Design Method for the Gear Drive Design (기어장치 설계를 위한 유전알고리듬 기반 연속-이산공간 최적화 및 다목적함수 순차적 설계 방법)

  • Lee, Joung-Sang;Chong, Tae-Hyong
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.16 no.5
    • /
    • pp.205-210
    • /
    • 2007
  • The integration method of binary and real encoding in genetic algorithm is proposed to deal with design variables of various types in gear drive design. The method is applied to optimum design of multi-stage gear drive. Integer and Discrete type design variables represent the number of teeth and module, and continuous type design variables represent face width, helix angle and addendum modification factor etc. The proposed genetic algorithm is applied for the gear ratio optimization and the volume optimization(minimization) of multi-stage geared motor which is used in field. In result, the proposed design optimization method shows an effectiveness in optimum design process and the new design has a better results compared with the existing design.

A Continuous Optimization Algorithm Using Equal Frequency Discretization Applied to a Fictitious Play (동일 빈도 이산화를 가상 경기에 적용한 연속형 최적화 알고리즘)

  • Lee, Chang-Yong
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.36 no.2
    • /
    • pp.8-16
    • /
    • 2013
  • In this paper, we proposed a new method for the determination of strategies that are required in a continuous optimization algorithm based on the fictitious play theory. In order to apply the fictitious play theory to continuous optimization problems, it is necessary to express continuous values of a variable in terms of discrete strategies. In this paper, we proposed a method in which all strategies contain an equal number of selected real values that are sorted in their magnitudes. For comparative analysis of the characteristics and performance of the proposed method of representing strategies with respect to the conventional method, we applied the method to the two types of benchmarking functions: separable and inseparable functions. From the experimental results, we can infer that, in the case of the separable functions, the proposed method not only outperforms but is more stable. In the case of inseparable functions, on the contrary, the performance of the optimization depends on the benchmarking functions. In particular, there is a rather strong correlation between the performance and stability regardless of the benchmarking functions.

A Study of New Evolutionary Approach for Multiobjective Optimization (다목적함수 최적화를 위한 새로운 진화적 방법 연구)

  • Shim, Mun-Bo;Suh, Myung-Won
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.6
    • /
    • pp.987-992
    • /
    • 2002
  • In an attempt to solve multiobjective optimization problems, many traditional methods scalarize the objective vector into a single objective. In those cases, the obtained solution is highly sensitive to the weight vector used in the scalarization process and demands the user to have knowledge about the underlying problem. Moreover, in solving multiobjective problems, designers may be interested in a set of Pareto-optimal points, instead of a single point. In this paper, pareto-based Continuous Evolutionary Algorithms for Multiobjective Optimization problems having continuous search space are introduced. This algorithm is based on Continuous Evolutionary Algorithms to solve single objective optimization problems with a continuous function and continuous search space efficiently. For multiobjective optimization, a progressive reproduction operator and a niche-formation method fur fitness sharing and a storing process for elitism are implemented in the algorithm. The operator and the niche formulation allow the solution set to be distributed widely over the Pareto-optimal tradeoff surface. Finally, the validity of this method has been demonstrated through a numerical example.

Evolutionary Analysis for Continuous Search Space (연속탐색공간에 대한 진화적 해석)

  • Lee, Joon-Seong;Bae, Byeong-Gyu
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.21 no.2
    • /
    • pp.206-211
    • /
    • 2011
  • In this paper, the evolutionary algorithm was specifically formulated for optimization with continuous parameter space. The proposal was motivated by the fact that the genetic algorithms have been most intensively reported for parameter identification problems with continuous search space. The difference of primary characteristics between genetic algorithms and the proposed algorithm, discrete or continuous individual representation has made different areas to which the algorithms should be applied. Results obtained by optimization of some well-known test functions indicate that the proposed algorithm is superior to genetic algorithms in all the performance, computation time and memory usage for continuous search space problems.

Structural optimization with teaching-learning-based optimization algorithm

  • Dede, Tayfun;Ayvaz, Yusuf
    • Structural Engineering and Mechanics
    • /
    • v.47 no.4
    • /
    • pp.495-511
    • /
    • 2013
  • In this paper, a new efficient optimization algorithm called Teaching-Learning-Based Optimization (TLBO) is used for the least weight design of trusses with continuous design variables. The TLBO algorithm is based on the effect of the influence of a teacher on the output of learners in a class. Several truss structures are analyzed to show the efficiency of the TLBO algorithm and the results are compared with those reported in the literature. It is concluded that the TLBO algorithm presented in this study can be effectively used in the weight minimization of truss structures.

An Improved MAP-Elites Algorithm via Rotational Invariant Operator in Differential Evolution for Continuous Optimization (연속 최적화를 위한 개선된 MAP-Elites 알고리즘)

  • Tae Jong Choi
    • Smart Media Journal
    • /
    • v.13 no.2
    • /
    • pp.129-135
    • /
    • 2024
  • In this paper, we propose a new approach that enhances the continuous optimization performance of the MAP-Elites algorithm. The existing self-referencing MAP-Elites algorithm employed the "DE/rand/1/bin" operator from the differential evolution algorithm, which, due to its lack of rotational invariance, led to a degradation in optimization performance when there were high correlations among variables. The proposed algorithm replaces the "DE/rand/1/bin" operator with the "DE/current-to-rand/1" operator. This operator, possessing rotational invariance, ensures robust performance even in cases where there are high correlations among variables. Experimental results confirm that the proposed algorithm performs better than the comparison algorithms.

A fast and robust procedure for optimal detail design of continuous RC beams

  • Bolideh, Ameneh;Arab, Hamed Ghohani;Ghasemi, Mohammad Reza
    • Computers and Concrete
    • /
    • v.24 no.4
    • /
    • pp.313-327
    • /
    • 2019
  • The purpose of the present study is to present a new approach to designing and selecting the details of multidimensional continuous RC beam by applying all strength, serviceability, ductility and other constraints based on ACI318-14 using Teaching Learning Based Optimization (TLBO) algorithm. The optimum reinforcement detailing of longitudinal bars is done in two steps. in the first stage, only the dimensions of the beam in each span are considered as the variables of the optimization algorithm. in the second stage, the optimal design of the longitudinal bars of the beam is made according to the first step inputs. In the optimum shear reinforcement, using gradient-based methods, the most optimal possible mode is selected based on the existing assumptions. The objective function in this study is a cost function that includes the cost of concrete, formwork and reinforcing steel bars. The steel used in the objective function is the sum of longitudinal and shear bars. The use of a catalog list consisting of all existing patterns of longitudinal bars based on the minimum rules of the regulation in the second stage, leads to a sharp reduction in the volume of calculations and the achievement of the best solution. Three example with varying degrees of complexity, have been selected in order to investigate the optimal design of the longitudinal and shear reinforcement of continuous beam.

Metaheuristic Optimization Techniques for an Electromagnetic Multilayer Radome Design

  • Nguyen, Trung Kien;Lee, In-Gon;Kwon, Obum;Kim, Yoon-Jae;Hong, Ic-Pyo
    • Journal of electromagnetic engineering and science
    • /
    • v.19 no.1
    • /
    • pp.31-36
    • /
    • 2019
  • In this study, an effective method for designing an electromagnetic multilayer radome is introduced. This method is achieved by using ant colony optimization for a continuous domain in the transmission coefficient maximization with stability for a wide angle of incidence in both perpendicular and parallel polarizations in specific X- and Ku-bands. To obtain the optimized parameter for a C-sandwich radome, particle swarm optimization algorithm is operated to give a clear comparison on the effectiveness of ant colony optimization for a continuous domain. The qualification of an optimized multilayer radome is also compared with an effective solid radome type in transmitted power stability and presented in this research.

Hopfield neuron based nonlinear constrained programming to fuzzy structural engineering optimization

  • Shih, C.J.;Chang, C.C.
    • Structural Engineering and Mechanics
    • /
    • v.7 no.5
    • /
    • pp.485-502
    • /
    • 1999
  • Using the continuous Hopfield network model as the basis to solve the general crisp and fuzzy constrained optimization problem is presented and examined. The model lies in its transformation to a parallel algorithm which distributes the work of numerical optimization to several simultaneously computing processors. The method is applied to different structural engineering design problems that demonstrate this usefulness, satisfaction or potential. The computing algorithm has been given and discussed for a designer who can program it without difficulty.