• Title/Summary/Keyword: Continuous Furnace

Search Result 93, Processing Time 0.017 seconds

A Study on Phosphate Removal Characteristic of EAF Slag for Submarine Cover Material (EAF Slag의 해양복토제 활용을 위한$PO_4{^-}-P$ 제거특성에 관한 연구)

  • Kim, Jae-Won;Seo, Jong-Beom;Kang, Min-Gyeong;Kim, In-Deuk;Oh, Kwang-Joong
    • Clean Technology
    • /
    • v.16 no.4
    • /
    • pp.258-264
    • /
    • 2010
  • This study estimated the possibility of phosphate removal characteristics to utilize EAF(electric arc furnace) slag as submarine cover material. The major phosphate removal mechanism was a certain formation of HAP precipitation occurred by the ionization reaction between $Ca^{2+}$ and $OH^-$, which were leached from the EAF Slag. Another phosphate removal mechanism was the adsortion of EAF slag surface. As a result of $PO_4{^-}-P$ removal characteristics using continuous column reactor, $PO_4{^-}-P$ concentration decreased rapidly after 3 days and 10 days later, it show under 0.5 ppm. The result as applied in real sea water, shows that the phosphate removal effects were 93~98% by the subaqueous sediment removal using the EAF slag. In conclusion, EAF slag is useful in $PO_4{^-}-P$ removal and control and it is possible to use without additional process like crush and selection.

The Effect of Au Addition on the Hardening Mechanism in Ag-25wt% Pd-15wt% Cu (Ag-25wt% Pd-15wt% Cu 3원합금(元合金) 및 Au 첨가합금(添加合金)의 시효경화특성(時效京華特性))

  • Bea, B.J.;Lee, H.S.;Lee, K.D.
    • Journal of Technologic Dentistry
    • /
    • v.20 no.1
    • /
    • pp.37-49
    • /
    • 1998
  • The specimens used were Ag-25 Pd-15 Cu ternary alloy and Au addition alloy. These alloys were melted and casted by induction electric furnace and centrifugal casting machine in Ar atmosphere. These specimens were solution treated for 2hr at $800^{\circ}C$ and were then quenched into iced water, and aged at $350{\sim}550^{\circ}C$ Age- hardening characteristics of the small Au-containing Ag-Pd-Cu dental alloys were investigated by means of hardness testing. X-ray diffraction and electron microscope observations, electrical resistance, ergy dispersed spectra and electron probe microanalysis. Principal results are as follows : Hardening occured in two stages, i.e., stage I in low temperature and stage II in high temperature regions, during continuous aging. The case of hardening in stage I was due to the formation of the $L1_0$ type face-centered tetragonal PdCu-ordered phase in the grain interior and hardening in stage I was affected by the Cu concentration. In stage II, decomposition of the ${\alpha}$ solid solution to a PdCu ordered phase($L1_0$ type) and an Ag-rich ${\alpha}2$ phase occurred and a discontinuous precipitation occurred at the grain boundary. From the electron microscope study, it was conclued that the cause of age-hardening in this alloy is the precipitation of the PdCu ordered phase, which has AuCu I type face-centered tetragonal structure. Precipetation procedure was ${\alpha}{\to}{\alpha}+{\alpha}_2+PdCu {\to}{\alpha}_1+{\alpha}_2+PdCu$ at Pd/Cu = 1.7 Ag-Pd-Cu alloy is more effective dental alloy as ageing treatment and is suitable to isothermal ageing at $450^{\circ}C$.

  • PDF

Numerical Prediction for Fluidized Bed Chlorination Reaction of Ilmenite Ore (일메나이트광의 유동층 염화반응에 대한 수치적 예측)

  • Chung, Dong-Kyu;Jung, Eun-Jin;Lee, Mi Sun;Kim, Jinyoung;Song, Duk-Yong
    • Clean Technology
    • /
    • v.25 no.2
    • /
    • pp.107-113
    • /
    • 2019
  • Numerical model that considered the shrinking core model and elutriation and degradation of particles was developed to predict selective chlorination of ilmenite and carbo-chlorination of $TiO_2$ in a two stage fluidized bed chlorination furnace. It is possible to analyze the fluidized bed chlorination reaction to be able to reflect particle distribution for mass balances and the chlorination reaction. The numerical model showed an accuracy with error less than 6% compared with fluidized bed experiments. The chlorination degree with particle size change was greater with a smaller particle size, and there was a 100 min difference to obtain a chlorination degree of 1 between $75{\mu}m$ and $275{\mu}m$. This was not shown to such a great extent with variation of temperature ($800{\sim}1000^{\circ}C$), and there was only a 10 min difference to obtain a chlorination degree of 0.9. In the first selective chlorination process, the mass reduction rate approached to the theoretical value of 0.4735 after 180 min, and chlorination changed the Fe component into $FeCl_2$ or $FeCl_3$ and showed nearly 1. In the second carbo-chlorination process, the chlorination degree of $TiO_2$ approached 0.98 and the mass fraction reached 0.02 with conversion into $TiCl_4$. In the first selective chlorination process, 98% of $TiO_2$ was produced at 180 min, and this was changed into 99% of $TiCl_4$ after an additional 90 min. Also the mass reduction rate of $TiO_2$ was reduced to 99% in the second continuous carbo-chlorination process.