• Title/Summary/Keyword: Contextual fear conditioning

Search Result 7, Processing Time 0.028 seconds

Effect of Intensity of Unconditional Stimulus on Reconsolidation of Contextual Fear Memory

  • Kwak, Chul-Jung;Choi, Jun-Hyeok;Bakes, Joseph T.;Lee, Kyung-Min;Kaang, Bong-Kiun
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.16 no.5
    • /
    • pp.293-296
    • /
    • 2012
  • Memory reconsolidation is ubiquitous across species and various memory tasks. It is a dynamic process in which memory is modified and/or updated. In experimental conditions, memory reconsolidation is usually characterized by the fact that the consolidated memory is disrupted by a combination of memory reactivation and inhibition of protein synthesis. However, under some experimental conditions, the reactivated memory is not disrupted by inhibition of protein synthesis. This so called "boundary condition" of reconsolidation may be related to memory strength. In Pavlovian fear conditioning, the intensity of unconditional stimulus (US) determines the strength of the fear memory. In this study, we examined the effect of the intensity of US on the reconsolidation of contextual fear memory. Strong contextual fear memory, which is conditioned with strong US, is not disrupted by inhibition of protein synthesis after its reactivation; however, a weak fear memory is often disrupted. This suggests that a US of strong intensity can inhibit reconsolidation of contextual fear memory.

Impaired Extinction of Learned Contextual Fear Memory in Early Growth Response 1 Knockout Mice

  • Han, Seungrie;Hong, Soontaek;Mo, Jiwon;Lee, Dongmin;Choi, Eunju;Choi, June-Seek;Sun, Woong;Lee, Hyun Woo;Kim, Hyun
    • Molecules and Cells
    • /
    • v.37 no.1
    • /
    • pp.24-30
    • /
    • 2014
  • Inductive expression of early growth response 1 (Egr-1) in neurons is associated with many forms of neuronal activity. However, only a few Egr-1 target genes are known in the brain. The results of this study demonstrate that Egr-1 knockout (KO) mice display impaired contextual extinction learning and normal fear acquisition relative to wild-type (WT) control animals. Genome-wide microarray experiments revealed 368 differentially expressed genes in the hippocampus of Egr-1 WT exposed to different phases of a fear conditioning paradigm compared to gene expression profiles in the hippocampus of KO mice. Some of genes, such as serotonin receptor 2C (Htr2c), neuropeptide B (Npb), neuronal PAS domain protein 4 (Npas4), NPY receptor Y1 (Npy1r), fatty acid binding protein 7 (Fabp7), and neuropeptide Y (Npy) are known to regulate processing of fearful memories, and promoter analyses demonstrated that several of these genes contained Egr-1 binding sites. This study provides a useful list of potential Egr-1 target genes which may be regulated during fear memory processing.

Hippocampus-dependent cognitive enhancement induced by systemic gintonin administration

  • Kim, Sungmin;Kim, Min-Soo;Park, Kwanghoon;Kim, Hyeon-Joong;Jung, Seok-Won;Nah, Seung-Yeol;Han, Jung-Soo;Chung, ChiHye
    • Journal of Ginseng Research
    • /
    • v.40 no.1
    • /
    • pp.55-61
    • /
    • 2016
  • Background: A number of neurological and neurodegenerative diseases share impaired cognition as a common symptom. Therefore, the development of clinically applicable therapies to enhance cognition has yielded significant interest. Previously, we have shown that activation of lysophosphatidic acid receptors (LPARs) via gintonin application potentiates synaptic transmission by the blockade of $K^+$ channels in the mature hippocampus. However, whether gintonin may exert any beneficial impact directly on cognition at the neural circuitry level and the behavioral level has not been investigated. Methods: In the current study, we took advantage of gintonin, a novel LPAR agonist, to investigate the effect of gintonin-mediated LPAR activation on cognitive performances. Hippocampus-dependent fear memory test, synaptic plasticity in the hippocampal brain slices, and quantitative analysis on synaptic plasticity-related proteins were used. Results: Daily oral administration of gintonin for 1 wk significantly improved fear memory retention in the contextual fear-conditioning test in mice.We also found that oral administration of gintonin for 1 wk increased the expression of learning and memory-related proteins such as phosphorylated cyclic adenosine monophosphate-response element binding (CREB) protein and brain-derived neurotrophic factor (BDNF). In addition, prolonged gintonin administration enhanced long-term potentiation in the hippocampus. Conclusion: Our observations suggest that the systemic gintonin administration could successfully improve contextual memory formation at the molecular and synaptic levels as well as the behavioral level. Therefore, oral administration of gintonin may serve as an effective noninvasive, nonsurgical method of enhancing cognitive functions.

Effect of Saenggitang on Learning and Memory Ability in Mice

  • Han Yun-Jeong;Chang Gyu-Tae;Kim Jang-Hyun
    • The Journal of Korean Medicine
    • /
    • v.25 no.4
    • /
    • pp.51-60
    • /
    • 2004
  • Objective : The effect Saenggitang (GT), which has been used for amnesia, in Oriental Medicine, on memory and learning ability, was investigated. Methods : Hot water extracts (HWE) of SGT were used for the studies. In passive avoidance performances (step through test), active avoidance performances (lever press test), Motor activity, pentobarbital-induced sleep, 20 and 50 mg/100g of SGT-HWE ameliorated the memory retrieval deficit induced by 40% ethanol. Results : The SGT-HWE did not affect the ambulatory activity of normal mice in normal condition. 20 and 50 mg/100g of SGT-HWE enhanced contextual fear memory, but not cued fear memory in a fear conditioning task, which requires the activation of the NMDA (N-methyl-D-aspartase) receptor. SGT-HWE did not affect the motor activity measured by the titling type ambulometer test performed immediately and 24 hr after the administration. SGT-HWE prolonged the sleeping time induced by 50 mg/kg pentobarbital in mice and decreased SMA (spontaneous motor activity) in active avoidance performances (lever press test). Conclusion : These results indicate that the SGT-HWE have an improving effect on the memory retrieval disability induced by ethanol and may act as a stimulating factor for activating the NMDA receptor. and the SGT-HWE has a tranquilizing and anti-anxiety action.

  • PDF

Tetramethylpyrazine reverses anxiety-like behaviors in a rat model of post-traumatic stress disorder

  • Lee, Bombi;Shim, Insop;Lee, Hyejung;Hahm, Dae-Hyun
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.22 no.5
    • /
    • pp.525-538
    • /
    • 2018
  • Post-traumatic stress disorder (PTSD) is a trauma-induced psychiatric disorder characterized by impaired fear extermination, hyperarousal, and anxiety that may involve the release of monoamines in the fear circuit. The reported pharmacological properties of tetramethylpyrazine (TMP) include anti-cancer, anti-diabetic, anti-atherosclerotic, and neuropsychiatric activities. However, the anxiolytic-like effects of TMP and its mechanism of action in PTSD are unclear. This study measured several anxiety-related behavioral responses to examine the effects of TMP on symptoms of anxiety in rats after single prolonged stress (SPS) exposure by reversing the serotonin (5-HT) and hypothalamic-pituitary-adrenal (HPA) axis dysfunction. Rats were given TMP (10, 20, or 40 mg/kg, i.p.) for 14 days after SPS exposure. Administration of TMP significantly reduced grooming behavior, increased the time spent and number of visits to the open arm in the elevated plus maze test, and significantly increased the number of central zone crossings in the open field test. TMP administration significantly reduced the freezing response to contextual fear conditioning and significantly restored the neurochemical abnormalities and the SPS-induced decrease in 5-HT tissue levels in the prefrontal cortex and hippocampus. The increased 5-HT concentration during TMP treatment might be partially attribute to the tryptophan and 5-hydroxyindoleacetic acid mRNA level expression in the hippocampus of rats with PTSD. These findings support a role for reducing the altered serotonergic transmission in rats with PTSD. TMP simultaneously attenuated the HPA axis dysfunction. Therefore, TMP may be useful for developing an agent for treating psychiatric disorders, such those observed in patients with PTSD.

Korean Red Ginseng prevents posttraumatic stress disorder-triggered depression-like behaviors in rats via activation of the serotonergic system

  • Lee, Bombi;Sur, Bongjun;Lee, Hyejung;Oh, Seikwan
    • Journal of Ginseng Research
    • /
    • v.44 no.4
    • /
    • pp.644-654
    • /
    • 2020
  • Background: Posttraumatic stress disorder (PTSD), a mental disorder induced by traumatic stress and often accompanied by depression and/or anxiety, may involve an imbalance in the neurotransmitters associated with the fear response. Korean Red Ginseng (KRG) has long been used as a traditional medicine and is known to be involved in a variety of pharmacological activities. We used the open field test and forced swimming test to examine the effects of KRG on the depression-like response of rats after exposure to single prolonged stress (SPS), leading to activation of the serotonergic system. Methods: Male rats received KRG (30, 50, and 100 mg/kg, intraperitoneal injection) once daily for 14 days after exposure to SPS. Results: Daily KRG administration significantly improved depression-like behaviors in the forced swimming test, increased the number of lines crossed and time spent in the central zone in the open field test, and decreased freezing behavior in contextual and cued fear conditioning. KRG treatment attenuated SPS-induced decreases in serotonin (5-HT) tissue concentrations in the hippocampus and medial prefrontal cortex. The increased 5-HT concentration during KRG treatment may be partially attributable to the 5-hydroxyindoleacetic acid/5-HT ratio in the hippocampus of rats with PTSD. These effects may be caused by the activation of hippocampal genes encoding tryptophan hydroxylase-1 and 2 mRNA levels. Conclusion: Our findings suggest that KRG has an antidepressant effect in rats subjected to SPS and may represent an effective use of traditional medicine for the treatment of PTSD.

Gene repressive mechanisms in the mouse brain involved in memory formation

  • Yu, Nam-Kyung;Kaang, Bong-Kiun
    • BMB Reports
    • /
    • v.49 no.4
    • /
    • pp.199-200
    • /
    • 2016
  • Gene regulation in the brain is essential for long-term plasticity and memory formation. Despite this established notion, the quantitative translational map in the brain during memory formation has not been reported. To systematically probe the changes in protein synthesis during memory formation, our recent study exploited ribosome profiling using the mouse hippocampal tissues at multiple time points after a learning event. Analysis of the resulting database revealed novel types of gene regulation after learning. First, the translation of a group of genes was rapidly suppressed without change in mRNA levels. At later time points, the expression of another group of genes was downregulated through reduction in mRNA levels. This reduction was predicted to be downstream of inhibition of ESR1 (Estrogen Receptor 1) signaling. Overexpressing Nrsn1, one of the genes whose translation was suppressed, or activating ESR1 by injecting an agonist interfered with memory formation, suggesting the functional importance of these findings. Moreover, the translation of genes encoding the translational machineries was found to be suppressed, among other genes in the mouse hippocampus. Together, this unbiased approach has revealed previously unidentified characteristics of gene regulation in the brain and highlighted the importance of repressive controls.